Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeInference-Time Scaling for Generalist Reward Modeling
Reinforcement learning (RL) has been widely adopted in post-training for large language models (LLMs) at scale. Recently, the incentivization of reasoning capabilities in LLMs from RL indicates that proper learning methods could enable effective inference-time scalability. A key challenge of RL is to obtain accurate reward signals for LLMs in various domains beyond verifiable questions or artificial rules. In this work, we investigate how to improve reward modeling (RM) with more inference compute for general queries, i.e. the inference-time scalability of generalist RM, and further, how to improve the effectiveness of performance-compute scaling with proper learning methods. For the RM approach, we adopt pointwise generative reward modeling (GRM) to enable flexibility for different input types and potential for inference-time scaling. For the learning method, we propose Self-Principled Critique Tuning (SPCT) to foster scalable reward generation behaviors in GRMs through online RL, to generate principles adaptively and critiques accurately, resulting in DeepSeek-GRM models. Furthermore, for effective inference-time scaling, we use parallel sampling to expand compute usage, and introduce a meta RM to guide voting process for better scaling performance. Empirically, we show that SPCT significantly improves the quality and scalability of GRMs, outperforming existing methods and models in various RM benchmarks without severe biases, and could achieve better performance compared to training-time scaling. DeepSeek-GRM still meets challenges in some tasks, which we believe can be addressed by future efforts in generalist reward systems. The models will be released and open-sourced.
RefineCoder: Iterative Improving of Large Language Models via Adaptive Critique Refinement for Code Generation
Code generation has attracted increasing attention with the rise of Large Language Models (LLMs). Many studies have developed powerful code LLMs by synthesizing code-related instruction data and applying supervised fine-tuning. However, these methods are limited by teacher model distillation and ignore the potential of iterative refinement by self-generated code. In this paper, we propose Adaptive Critique Refinement (ACR), which enables the model to refine itself by self-generated code and external critique, rather than directly imitating the code responses of the teacher model. Concretely, ACR includes a composite scoring system with LLM-as-a-Judge to evaluate the quality of code responses and a selective critique strategy with LLM-as-a-Critic to critique self-generated low-quality code responses. We develop the RefineCoder series by iteratively applying ACR, achieving continuous performance improvement on multiple code generation benchmarks. Compared to the baselines of the same size, our proposed RefineCoder series can achieve comparable or even superior performance using less data.
ChatGLM-Math: Improving Math Problem-Solving in Large Language Models with a Self-Critique Pipeline
Large language models (LLMs) have shown excellent mastering of human language, but still struggle in real-world applications that require mathematical problem-solving. While many strategies and datasets to enhance LLMs' mathematics are developed, it remains a challenge to simultaneously maintain and improve both language and mathematical capabilities in deployed LLM systems.In this work, we tailor the Self-Critique pipeline, which addresses the challenge in the feedback learning stage of LLM alignment. We first train a general Math-Critique model from the LLM itself to provide feedback signals. Then, we sequentially employ rejective fine-tuning and direct preference optimization over the LLM's own generations for data collection. Based on ChatGLM3-32B, we conduct a series of experiments on both academic and our newly created challenging dataset, MathUserEval. Results show that our pipeline significantly enhances the LLM's mathematical problem-solving while still improving its language ability, outperforming LLMs that could be two times larger. Related techniques have been deployed to ChatGLM\url{https://chatglm.cn}, an online serving LLM. Related evaluation dataset and scripts are released at https://github.com/THUDM/ChatGLM-Math.
Distilled Self-Critique of LLMs with Synthetic Data: a Bayesian Perspective
This paper proposes an interpretation of RLAIF as Bayesian inference by introducing distilled Self-Critique (dSC), which refines the outputs of a LLM through a Gibbs sampler that is later distilled into a fine-tuned model. Only requiring synthetic data, dSC is exercised in experiments regarding safety, sentiment, and privacy control, showing it can be a viable and cheap alternative to align LLMs. Code released at https://github.com/vicgalle/distilled-self-critique.
CRITICTOOL: Evaluating Self-Critique Capabilities of Large Language Models in Tool-Calling Error Scenarios
The ability of large language models (LLMs) to utilize external tools has enabled them to tackle an increasingly diverse range of tasks. However, as the tasks become more complex and long-horizon, the intricate tool utilization process may trigger various unexpected errors. Therefore, how to effectively handle such errors, including identifying, diagnosing, and recovering from them, has emerged as a key research direction for advancing tool learning. In this work, we first extensively analyze the types of errors encountered during the function-calling process on several competitive tool evaluation benchmarks. Based on it, we introduce CRITICTOOL, a comprehensive critique evaluation benchmark specialized for tool learning. Building upon a novel evolutionary strategy for dataset construction, CRITICTOOL holds diverse tool-use errors with varying complexities, which better reflects real-world scenarios. We conduct extensive experiments on CRITICTOOL, and validate the generalization and effectiveness of our constructed benchmark strategy. We also provide an in-depth analysis of the tool reflection ability on various LLMs, offering a new perspective on the field of tool learning in LLMs. The code is available at https://github.com/Shellorley0513/CriticTool{https://github.com/Shellorley0513/CriticTool}.
Merging Improves Self-Critique Against Jailbreak Attacks
The robustness of large language models (LLMs) against adversarial manipulations, such as jailbreak attacks, remains a significant challenge. In this work, we propose an approach that enhances the self-critique capability of the LLM and further fine-tunes it over sanitized synthetic data. This is done with the addition of an external critic model that can be merged with the original, thus bolstering self-critique capabilities and improving the robustness of the LLMs response to adversarial prompts. Our results demonstrate that the combination of merging and self-critique can reduce the attack success rate of adversaries significantly, thus offering a promising defense mechanism against jailbreak attacks. Code, data and models released at https://github.com/vicgalle/merging-self-critique-jailbreaks .
OpenCodeReasoning-II: A Simple Test Time Scaling Approach via Self-Critique
Recent advancements in reasoning-based Large Language Models (LLMs), particularly their potential through test-time scaling, have created significant opportunities for distillation in code generation and critique. However, progress in both areas fundamentally depends on large-scale, high-quality datasets. In this work, we introduce OpenCodeReasoning-II, a dataset consists of 2.5M question-solution-critique triples (approx. 35K unique programming questions), making it nearly twice the size of the previous largest publicly available code reasoning dataset. In this work, we employ a two-stage supervised fine-tuning strategy. The first stage focuses on fine-tuning for code generation, while the second stage involves the joint training of models for both code generation and critique. Our resulting finetuned Qwen2.5-Instruct models achieve performance in code generation that either exceeds or equals the best prior open-weight distilled models. Notably, the integration of our code generation and critique models leads to significant improvements in competitive coding performance. Furthermore, we present an extension of the LiveCodeBench benchmark to specifically support the C++ programming language, thereby facilitating more comprehensive LLM evaluation using this benchmark.
Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training
Large Language Models (LLMs) agents are increasingly pivotal for addressing complex tasks in interactive environments. Existing work mainly focuses on enhancing performance through behavior cloning from stronger experts, yet such approaches often falter in real-world applications, mainly due to the inability to recover from errors. However, step-level critique data is difficult and expensive to collect. Automating and dynamically constructing self-critique datasets is thus crucial to empowering models with intelligent agent capabilities. In this work, we propose an iterative self-training framework, Agent-R, that enables language Agent to Reflect on the fly. Unlike traditional methods that reward or penalize actions based on correctness, Agent-R leverages MCTS to construct training data that recover correct trajectories from erroneous ones. A key challenge of agent reflection lies in the necessity for timely revision rather than waiting until the end of a rollout. To address this, we introduce a model-guided critique construction mechanism: the actor model identifies the first error step (within its current capability) in a failed trajectory. Starting from it, we splice it with the adjacent correct path, which shares the same parent node in the tree. This strategy enables the model to learn reflection based on its current policy, therefore yielding better learning efficiency. To further explore the scalability of this self-improvement paradigm, we investigate iterative refinement of both error correction capabilities and dataset construction. Our findings demonstrate that Agent-R continuously improves the model's ability to recover from errors and enables timely error correction. Experiments on three interactive environments show that Agent-R effectively equips agents to correct erroneous actions while avoiding loops, achieving superior performance compared to baseline methods (+5.59%).
Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in Self-Refined Open-Source Models
The dominance of proprietary LLMs has led to restricted access and raised information privacy concerns. High-performing open-source alternatives are crucial for information-sensitive and high-volume applications but often lag behind in performance. To address this gap, we propose (1) A untargeted variant of iterative self-critique and self-refinement devoid of external influence. (2) A novel ranking metric - Performance, Refinement, and Inference Cost Score (PeRFICS) - to find the optimal model for a given task considering refined performance and cost. Our experiments show that SoTA open source models of varying sizes from 7B - 65B, on average, improve 8.2% from their baseline performance. Strikingly, even models with extremely small memory footprints, such as Vicuna-7B, show a 11.74% improvement overall and up to a 25.39% improvement in high-creativity, open ended tasks on the Vicuna benchmark. Vicuna-13B takes it a step further and outperforms ChatGPT post-refinement. This work has profound implications for resource-constrained and information-sensitive environments seeking to leverage LLMs without incurring prohibitive costs, compromising on performance and privacy. The domain-agnostic self-refinement process coupled with our novel ranking metric facilitates informed decision-making in model selection, thereby reducing costs and democratizing access to high-performing language models, as evidenced by case studies.
Double-Checker: Enhancing Reasoning of Slow-Thinking LLMs via Self-Critical Fine-Tuning
While slow-thinking large language models (LLMs) exhibit reflection-like reasoning, commonly referred to as the "aha moment:, their ability to generate informative critiques and refine prior solutions remains limited. In this paper, we introduce Double-Checker, a principled framework designed to enhance the reasoning capabilities of slow-thinking LLMs by fostering explicit self-critique and iterative refinement of their previous solutions. By fine-tuning on our curated 1,730 self-critical instances, Double-Checker empowers long-CoT LLMs to iteratively critique and refine their outputs during inference until they evaluate their solutions as correct under self-generated critiques. We validate the efficacy of Double-Checker across a comprehensive suite of reasoning benchmarks, demonstrating that iterative self-critique significantly enhances the reasoning capabilities of long-CoT LLMs. Notably, our Double-Checker increases the pass@1 performance on challenging AIME benchmarks from 4.4% to 18.2% compared to the original long-CoT LLMs. These results highlight a promising direction for developing more trustworthy and effective LLMs capable of structured self-critique. Our codes and data are available at https://github.com/XinXU-USTC/DoubleChecker
Can Large Language Models Really Improve by Self-critiquing Their Own Plans?
There have been widespread claims about Large Language Models (LLMs) being able to successfully verify or self-critique their candidate solutions in reasoning problems in an iterative mode. Intrigued by those claims, in this paper we set out to investigate the verification/self-critiquing abilities of large language models in the context of planning. We evaluate a planning system that employs LLMs for both plan generation and verification. We assess the verifier LLM's performance against ground-truth verification, the impact of self-critiquing on plan generation, and the influence of varying feedback levels on system performance. Using GPT-4, a state-of-the-art LLM, for both generation and verification, our findings reveal that self-critiquing appears to diminish plan generation performance, especially when compared to systems with external, sound verifiers and the LLM verifiers in that system produce a notable number of false positives, compromising the system's reliability. Additionally, the nature of feedback, whether binary or detailed, showed minimal impact on plan generation. Collectively, our results cast doubt on the effectiveness of LLMs in a self-critiquing, iterative framework for planning tasks.
LLaVA-Critic: Learning to Evaluate Multimodal Models
We introduce LLaVA-Critic, the first open-source large multimodal model (LMM) designed as a generalist evaluator to assess performance across a wide range of multimodal tasks. LLaVA-Critic is trained using a high-quality critic instruction-following dataset that incorporates diverse evaluation criteria and scenarios. Our experiments demonstrate the model's effectiveness in two key areas: (1) LMM-as-a-Judge, where LLaVA-Critic provides reliable evaluation scores, performing on par with or surpassing GPT models on multiple evaluation benchmarks; and (2) Preference Learning, where it generates reward signals for preference learning, enhancing model alignment capabilities. This work underscores the potential of open-source LMMs in self-critique and evaluation, setting the stage for future research into scalable, superhuman alignment feedback mechanisms for LMMs.
Constitutional AI: Harmlessness from AI Feedback
As AI systems become more capable, we would like to enlist their help to supervise other AIs. We experiment with methods for training a harmless AI assistant through self-improvement, without any human labels identifying harmful outputs. The only human oversight is provided through a list of rules or principles, and so we refer to the method as 'Constitutional AI'. The process involves both a supervised learning and a reinforcement learning phase. In the supervised phase we sample from an initial model, then generate self-critiques and revisions, and then finetune the original model on revised responses. In the RL phase, we sample from the finetuned model, use a model to evaluate which of the two samples is better, and then train a preference model from this dataset of AI preferences. We then train with RL using the preference model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a result we are able to train a harmless but non-evasive AI assistant that engages with harmful queries by explaining its objections to them. Both the SL and RL methods can leverage chain-of-thought style reasoning to improve the human-judged performance and transparency of AI decision making. These methods make it possible to control AI behavior more precisely and with far fewer human labels.
Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting
Retrieval augmented generation (RAG) combines the generative abilities of large language models (LLMs) with external knowledge sources to provide more accurate and up-to-date responses. Recent RAG advancements focus on improving retrieval outcomes through iterative LLM refinement or self-critique capabilities acquired through additional instruction tuning of LLMs. In this work, we introduce Speculative RAG - a framework that leverages a larger generalist LM to efficiently verify multiple RAG drafts produced in parallel by a smaller, distilled specialist LM. Each draft is generated from a distinct subset of retrieved documents, offering diverse perspectives on the evidence while reducing input token counts per draft. This approach enhances comprehension of each subset and mitigates potential position bias over long context. Our method accelerates RAG by delegating drafting to the smaller specialist LM, with the larger generalist LM performing a single verification pass over the drafts. Extensive experiments demonstrate that Speculative RAG achieves state-of-the-art performance with reduced latency on TriviaQA, MuSiQue, PubHealth, and ARC-Challenge benchmarks. It notably enhances accuracy by up to 12.97% while reducing latency by 51% compared to conventional RAG systems on PubHealth.
Learning How Hard to Think: Input-Adaptive Allocation of LM Computation
Computationally intensive decoding procedures--including search, reranking, and self-critique--can improve the quality of language model (LM) outputs in problems spanning code generation, numerical reasoning, and dialog. Existing work typically applies the same decoding procedure for every input to an LM. But not all inputs require the same amount of computation to process. Can we allocate decoding computation adaptively, using more resources to answer questions whose answers will be harder to compute? We present an approach that predicts the distribution of rewards given an input and computation budget, then allocates additional computation to inputs for which it is predicted to be most useful. We apply this approach in two decoding procedures: first, an adaptive best-of-k procedure that dynamically selects the number of samples to generate as input to a reranker; second, a routing procedure that dynamically responds to a query using a decoding procedure that is expensive but accurate, or one that is cheaper but less capable. Across a suite of programming, mathematics, and dialog tasks, we show that accurate computation-allocation procedures can be learned, and reduce computation by up to 50% at no cost to response quality, or improve quality by up to 10% at a fixed computational budget.
Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents
Large Language Models (LLMs) have shown remarkable capabilities in natural language tasks requiring complex reasoning, yet their application in agentic, multi-step reasoning within interactive environments remains a difficult challenge. Traditional supervised pre-training on static datasets falls short in enabling autonomous agent capabilities needed to perform complex decision-making in dynamic settings like web navigation. Previous attempts to bridge this ga-through supervised fine-tuning on curated expert demonstrations-often suffer from compounding errors and limited exploration data, resulting in sub-optimal policy outcomes. To overcome these challenges, we propose a framework that combines guided Monte Carlo Tree Search (MCTS) search with a self-critique mechanism and iterative fine-tuning on agent interactions using an off-policy variant of the Direct Preference Optimization (DPO) algorithm. Our method allows LLM agents to learn effectively from both successful and unsuccessful trajectories, thereby improving their generalization in complex, multi-step reasoning tasks. We validate our approach in the WebShop environment-a simulated e-commerce platform where it consistently outperforms behavior cloning and reinforced fine-tuning baseline, and beats average human performance when equipped with the capability to do online search. In real-world booking scenarios, our methodology boosts Llama-3 70B model's zero-shot performance from 18.6% to 81.7% success rate (a 340% relative increase) after a single day of data collection and further to 95.4% with online search. We believe this represents a substantial leap forward in the capabilities of autonomous agents, paving the way for more sophisticated and reliable decision-making in real-world settings.
Unlocking Efficient Long-to-Short LLM Reasoning with Model Merging
The transition from System 1 to System 2 reasoning in large language models (LLMs) has marked significant advancements in handling complex tasks through deliberate, iterative thinking. However, this progress often comes at the cost of efficiency, as models tend to overthink, generating redundant reasoning steps without proportional improvements in output quality. Long-to-Short (L2S) reasoning has emerged as a promising solution to this challenge, aiming to balance reasoning depth with practical efficiency. While existing approaches, such as supervised fine-tuning (SFT), reinforcement learning (RL), and prompt engineering, have shown potential, they are either computationally expensive or unstable. Model merging, on the other hand, offers a cost-effective and robust alternative by integrating the quick-thinking capabilities of System 1 models with the methodical reasoning of System 2 models. In this work, we present a comprehensive empirical study on model merging for L2S reasoning, exploring diverse methodologies, including task-vector-based, SVD-based, and activation-informed merging. Our experiments reveal that model merging can reduce average response length by up to 55% while preserving or even improving baseline performance. We also identify a strong correlation between model scale and merging efficacy with extensive evaluations on 1.5B/7B/14B/32B models. Furthermore, we investigate the merged model's ability to self-critique and self-correct, as well as its adaptive response length based on task complexity. Our findings highlight model merging as a highly efficient and effective paradigm for L2S reasoning, offering a practical solution to the overthinking problem while maintaining the robustness of System 2 reasoning. This work can be found on Github https://github.com/hahahawu/Long-to-Short-via-Model-Merging.
Thinking with Generated Images
We present Thinking with Generated Images, a novel paradigm that fundamentally transforms how large multimodal models (LMMs) engage with visual reasoning by enabling them to natively think across text and vision modalities through spontaneous generation of intermediate visual thinking steps. Current visual reasoning with LMMs is constrained to either processing fixed user-provided images or reasoning solely through text-based chain-of-thought (CoT). Thinking with Generated Images unlocks a new dimension of cognitive capability where models can actively construct intermediate visual thoughts, critique their own visual hypotheses, and refine them as integral components of their reasoning process. We demonstrate the effectiveness of our approach through two complementary mechanisms: (1) vision generation with intermediate visual subgoals, where models decompose complex visual tasks into manageable components that are generated and integrated progressively, and (2) vision generation with self-critique, where models generate an initial visual hypothesis, analyze its shortcomings through textual reasoning, and produce refined outputs based on their own critiques. Our experiments on vision generation benchmarks show substantial improvements over baseline approaches, with our models achieving up to 50% (from 38% to 57%) relative improvement in handling complex multi-object scenarios. From biochemists exploring novel protein structures, and architects iterating on spatial designs, to forensic analysts reconstructing crime scenes, and basketball players envisioning strategic plays, our approach enables AI models to engage in the kind of visual imagination and iterative refinement that characterizes human creative, analytical, and strategic thinking. We release our open-source suite at https://github.com/GAIR-NLP/thinking-with-generated-images.
DRLC: Reinforcement Learning with Dense Rewards from LLM Critic
Reinforcement learning (RL) can align language models with non-differentiable reward signals, such as human preferences. However, a major challenge arises from the sparsity of these reward signals - typically, there is only one reward for the entire generation. This sparsity of rewards can lead to inefficient and unstable learning. In this paper, we introduce a novel framework leveraging the critique ability of LLMs to produce dense rewards throughout the learning process. Our approach incorporates a critic language model alongside the policy model. This critic is prompted with the task description, question, policy model's output, and environment's reward signal as input, and provides token or span-level dense rewards that reflect the quality of each segment of the output. We assess our approach on three text generation tasks: sentiment control, language model detoxification, and summarization. Experimental results show that incorporating artificial dense rewards in training yields consistent performance gains over the PPO baseline with holistic rewards. Furthermore, in a setting where the same model serves as both policy and critic, we demonstrate that "self-critique" rewards also boost learning efficiency.
GPT-4 Doesn't Know It's Wrong: An Analysis of Iterative Prompting for Reasoning Problems
There has been considerable divergence of opinion on the reasoning abilities of Large Language Models (LLMs). While the initial optimism that reasoning might emerge automatically with scale has been tempered thanks to a slew of counterexamples, a wide spread belief in their iterative self-critique capabilities persists. In this paper, we set out to systematically investigate the effectiveness of iterative prompting of LLMs in the context of Graph Coloring, a canonical NP-complete reasoning problem that is related to propositional satisfiability as well as practical problems like scheduling and allocation. We present a principled empirical study of the performance of GPT4 in solving graph coloring instances or verifying the correctness of candidate colorings. In iterative modes, we experiment with the model critiquing its own answers and an external correct reasoner verifying proposed solutions. In both cases, we analyze whether the content of the criticisms actually affects bottom line performance. The study seems to indicate that (i) LLMs are bad at solving graph coloring instances (ii) they are no better at verifying a solution--and thus are not effective in iterative modes with LLMs critiquing LLM-generated solutions (iii) the correctness and content of the criticisms--whether by LLMs or external solvers--seems largely irrelevant to the performance of iterative prompting. We show that the observed increase in effectiveness is largely due to the correct solution being fortuitously present in the top-k completions of the prompt (and being recognized as such by an external verifier). Our results thus call into question claims about the self-critiquing capabilities of state of the art LLMs.
Exploring Large Language Models for Specialist-level Oncology Care
Large language models (LLMs) have shown remarkable progress in encoding clinical knowledge and responding to complex medical queries with appropriate clinical reasoning. However, their applicability in subspecialist or complex medical settings remains underexplored. In this work, we probe the performance of AMIE, a research conversational diagnostic AI system, in the subspecialist domain of breast oncology care without specific fine-tuning to this challenging domain. To perform this evaluation, we curated a set of 50 synthetic breast cancer vignettes representing a range of treatment-naive and treatment-refractory cases and mirroring the key information available to a multidisciplinary tumor board for decision-making (openly released with this work). We developed a detailed clinical rubric for evaluating management plans, including axes such as the quality of case summarization, safety of the proposed care plan, and recommendations for chemotherapy, radiotherapy, surgery and hormonal therapy. To improve performance, we enhanced AMIE with the inference-time ability to perform web search retrieval to gather relevant and up-to-date clinical knowledge and refine its responses with a multi-stage self-critique pipeline. We compare response quality of AMIE with internal medicine trainees, oncology fellows, and general oncology attendings under both automated and specialist clinician evaluations. In our evaluations, AMIE outperformed trainees and fellows demonstrating the potential of the system in this challenging and important domain. We further demonstrate through qualitative examples, how systems such as AMIE might facilitate conversational interactions to assist clinicians in their decision making. However, AMIE's performance was overall inferior to attending oncologists suggesting that further research is needed prior to consideration of prospective uses.
Writing-Zero: Bridge the Gap Between Non-verifiable Problems and Verifiable Rewards
Reinforcement learning with verifiable rewards (RLVR) has enabled large language models (LLMs) to achieve remarkable breakthroughs in reasoning tasks with objective ground-truth answers, such as mathematics and code generation. However, a significant gap remains for non-verifiable tasks, like creative writing and open-ended dialogue, where quality assessment is inherently subjective and lacks definitive references. Existing approaches for these domains often rely on scalar reward models trained with human preferences, which suffer from limited generalization and are prone to reward hacking, such as over-explanation and length bias. In this work, we propose a unified RLVR-based training paradigm that bridges the gap between non-verifiable tasks and verifiable rewards. We introduce a writing-principle-based pairwise Generative Reward Model (GenRM) and a novel Bootstrapped Relative Policy Optimization (BRPO) algorithm. The pairwise writing GenRM leverages self-principled critique to transform subjective assessments into reliable, verifiable rewards, while BRPO enables dynamic, reference-free pairwise comparison by leveraging a bootstrapped response as temporary reference from within group rollouts during RL training. Our approach empowers LLMs to develop robust writing capabilities without supervised fine-tuning, as demonstrated by Writing-Zero, which shows consistent improvement and strong resistance to reward hacking compared to scalar reward baselines. Furthermore, our method achieves competitive results on both in-house and open-source writing benchmarks. Our findings suggest the potential to unify rule-based, reference-based, and reference-free reward modeling under the RLVR framework, thus paving the way for a comprehensive and scalable RL training paradigm applicable across all language tasks.
Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection
Despite their remarkable capabilities, large language models (LLMs) often produce responses containing factual inaccuracies due to their sole reliance on the parametric knowledge they encapsulate. Retrieval-Augmented Generation (RAG), an ad hoc approach that augments LMs with retrieval of relevant knowledge, decreases such issues. However, indiscriminately retrieving and incorporating a fixed number of retrieved passages, regardless of whether retrieval is necessary, or passages are relevant, diminishes LM versatility or can lead to unhelpful response generation. We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG) that enhances an LM's quality and factuality through retrieval and self-reflection. Our framework trains a single arbitrary LM that adaptively retrieves passages on-demand, and generates and reflects on retrieved passages and its own generations using special tokens, called reflection tokens. Generating reflection tokens makes the LM controllable during the inference phase, enabling it to tailor its behavior to diverse task requirements. Experiments show that Self-RAG (7B and 13B parameters) significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks. Specifically, Self-RAG outperforms ChatGPT and retrieval-augmented Llama2-chat on Open-domain QA, reasoning and fact verification tasks, and it shows significant gains in improving factuality and citation accuracy for long-form generations relative to these models.
Refined Direct Preference Optimization with Synthetic Data for Behavioral Alignment of LLMs
In this paper, we introduce refined Direct Preference Optimization (rDPO), a method for improving the behavioral alignment of Large Language Models (LLMs) without the need for human-annotated data. The method involves creating synthetic data using self-critique prompting by a teacher LLM and then utilising a generalized DPO loss function to distil to a student LLM. The loss function incorporates an additional external reward model to improve the quality of synthetic data, making rDPO robust to potential noise in the synthetic dataset. rDPO is shown to be effective in a diverse set of behavioural alignment tasks, such as improved safety, robustness against role-playing, and reduced sycophancy. Code to be released at https://github.com/vicgalle/refined-dpo.
RealCritic: Towards Effectiveness-Driven Evaluation of Language Model Critiques
Critiques are important for enhancing the performance of Large Language Models (LLMs), enabling both self-improvement and constructive feedback for others by identifying flaws and suggesting improvements. However, evaluating the critique capabilities of LLMs presents a significant challenge due to the open-ended nature of the task. In this work, we introduce a new benchmark designed to assess the critique capabilities of LLMs. Unlike existing benchmarks, which typically function in an open-loop fashion, our approach employs a closed-loop methodology that evaluates the quality of corrections generated from critiques. Moreover, the benchmark incorporates features such as self-critique, cross-critique, and iterative critique, which are crucial for distinguishing the abilities of advanced reasoning models from more classical ones. We implement this benchmark using eight challenging reasoning tasks. We have several interesting findings. First, despite demonstrating comparable performance in direct chain-of-thought generation, classical LLMs significantly lag behind the advanced reasoning-based model o1-mini across all critique scenarios. Second, in self-critique and iterative critique settings, classical LLMs may even underperform relative to their baseline capabilities. We hope that this benchmark will serve as a valuable resource to guide future advancements. The code and data are available at https://github.com/tangzhy/RealCritic.
What's Wrong with Your Code Generated by Large Language Models? An Extensive Study
The increasing development of large language models (LLMs) in code generation has drawn significant attention among researchers. To enhance LLM-based code generation ability, current efforts are predominantly directed towards collecting high-quality datasets and leveraging diverse training technologies. However, there is a notable lack of comprehensive studies examining the limitations and boundaries of these existing methods. To bridge this gap, we conducted an extensive empirical study evaluating the performance of three leading closed-source LLMs and four popular open-source LLMs on three commonly used benchmarks. Our investigation, which evaluated the length, cyclomatic complexity and API number of the generated code, revealed that these LLMs face challenges in generating successful code for more complex problems, and tend to produce code that is shorter yet more complicated as compared to canonical solutions. Additionally, we developed a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types. Furthermore, to better understand the performance of LLMs in real-world projects, we manually created a real-world benchmark comprising 140 code generation tasks. Our analysis highlights distinct differences in bug distributions between actual scenarios and existing benchmarks. Finally, we propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback. Experimental results demonstrate that our approach can significantly mitigate bugs and increase the passing rate by 29.2% after two iterations, indicating substantial potential for LLMs to handle more complex problems.
CriticBench: Benchmarking LLMs for Critique-Correct Reasoning
The ability of Large Language Models (LLMs) to critique and refine their reasoning is crucial for their application in evaluation, feedback provision, and self-improvement. This paper introduces CriticBench, a comprehensive benchmark designed to assess LLMs' abilities to critique and rectify their reasoning across a variety of tasks. CriticBench encompasses five reasoning domains: mathematical, commonsense, symbolic, coding, and algorithmic. It compiles 15 datasets and incorporates responses from three LLM families. Utilizing CriticBench, we evaluate and dissect the performance of 17 LLMs in generation, critique, and correction reasoning, i.e., GQC reasoning. Our findings reveal: (1) a linear relationship in GQC capabilities, with critique-focused training markedly enhancing performance; (2) a task-dependent variation in correction effectiveness, with logic-oriented tasks being more amenable to correction; (3) GQC knowledge inconsistencies that decrease as model size increases; and (4) an intriguing inter-model critiquing dynamic, where stronger models are better at critiquing weaker ones, while weaker models can surprisingly surpass stronger ones in their self-critique. We hope these insights into the nuanced critique-correct reasoning of LLMs will foster further research in LLM critique and self-improvement.
LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints
Instruction following is a key capability for LLMs. However, recent studies have shown that LLMs often struggle with instructions containing multiple constraints (e.g. a request to create a social media post "in a funny tone" with "no hashtag"). Despite this, most evaluations focus solely on synthetic data. To address this, we introduce RealInstruct, the first benchmark designed to evaluate LLMs' ability to follow real-world multi-constrained instructions by leveraging queries real users asked AI assistants. We also investigate model-based evaluation as a cost-effective alternative to human annotation for this task. Our findings reveal that even the proprietary GPT-4 model fails to meet at least one constraint on over 21% of instructions, highlighting the limitations of state-of-the-art models. To address the performance gap between open-source and proprietary models, we propose the Decompose, Critique and Refine (DeCRIM) self-correction pipeline, which enhances LLMs' ability to follow constraints. DeCRIM works by decomposing the original instruction into a list of constraints and using a Critic model to decide when and where the LLM's response needs refinement. Our results show that DeCRIM improves Mistral's performance by 7.3% on RealInstruct and 8.0% on IFEval even with weak feedback. Moreover, we demonstrate that with strong feedback, open-source LLMs with DeCRIM can outperform GPT-4 on both benchmarks.
VISCO: Benchmarking Fine-Grained Critique and Correction Towards Self-Improvement in Visual Reasoning
The ability of large vision-language models (LVLMs) to critique and correct their reasoning is an essential building block towards their self-improvement. However, a systematic analysis of such capabilities in LVLMs is still lacking. We propose VISCO, the first benchmark to extensively analyze the fine-grained critique and correction capabilities of LVLMs. Compared to existing work that uses a single scalar value to critique the entire reasoning [4], VISCO features dense and fine-grained critique, requiring LVLMs to evaluate the correctness of each step in the chain-of-thought and provide natural language explanations to support their judgments. Extensive evaluation of 24 LVLMs demonstrates that human-written critiques significantly enhance the performance after correction, showcasing the potential of the self-improvement strategy. However, the model-generated critiques are less helpful and sometimes detrimental to the performance, suggesting that critique is the crucial bottleneck. We identified three common patterns in critique failures: failure to critique visual perception, reluctance to "say no", and exaggerated assumption of error propagation. To address these issues, we propose an effective LookBack strategy that revisits the image to verify each piece of information in the initial reasoning. LookBack significantly improves critique and correction performance by up to 13.5%.
Confidence v.s. Critique: A Decomposition of Self-Correction Capability for LLMs
Large Language Models (LLMs) can correct their self-generated responses, but a decline in accuracy after self-correction is also witnessed. To have a deeper understanding of self-correction, we endeavor to decompose, evaluate, and analyze the self-correction behaviors of LLMs. By enumerating and analyzing answer correctness before and after self-correction, we decompose the self-correction capability into confidence (being confident to correct answers) and critique (turning wrong answers to correct) capabilities, and propose two metrics from a probabilistic perspective to measure these 2 capabilities, along with another metric for overall self-correction capability evaluation. Based on our decomposition and evaluation metrics, we conduct extensive experiments and draw some empirical conclusions. For example, we find different models can exhibit distinct behaviors: some models are confident while others are more critical. We also find the trade-off between the two capabilities (i.e. improving one can lead to a decline in the other) when manipulating model self-correction behavior by prompts or in-context learning. Further, we find a simple yet efficient strategy to improve self-correction capability by transforming Supervision Fine-Tuning (SFT) data format, and our strategy outperforms vanilla SFT in both capabilities and achieves much higher accuracy after self-correction. Our code will be publicly available on GitHub.
MC-NEST -- Enhancing Mathematical Reasoning in Large Language Models with a Monte Carlo Nash Equilibrium Self-Refine Tree
Mathematical reasoning has proven to be a critical yet challenging task for large language models (LLMs), as they often struggle with complex multi-step problems. To address these limitations, we introduce the Monte Carlo Nash Equilibrium Self-Refine Tree (MC-NEST) algorithm, an enhancement of the Monte Carlo Tree Self-Refine (MCTSr) approach. By integrating Nash Equilibrium strategies with LLM-based self-refinement and self-evaluation processes, MC-NEST aims to improve decision-making for complex mathematical reasoning tasks. This method ensures balanced exploration and exploitation of potential solutions, leveraging Upper Confidence Bound (UCT) scores and various selection policies. Through iterative critique and refinement, MC-NEST enhances the reasoning capabilities of LLMs, particularly for problems requiring strategic decision-making. Comparative analysis reveals that GPT-4o, equipped with MC-NEST using an Importance Sampling Policy, achieved superior accuracy in domains such as Number Theory and Geometry. These results suggest that both LLMs GPT-4o and Phi-3-mini can benefit from MC-NEST, with iterative self-refinement proving especially effective in expanding the reasoning capacity and problem-solving performance of LLMs. We evaluate the effectiveness of MC-NEST on challenging Olympiad-level benchmarks, demonstrating its potential to significantly boost complex mathematical reasoning performance in LLMs.
Critique Before Thinking: Mitigating Hallucination through Rationale-Augmented Instruction Tuning
Despite significant advancements in multimodal reasoning tasks, existing Large Vision-Language Models (LVLMs) are prone to producing visually ungrounded responses when interpreting associated images. In contrast, when humans embark on learning new knowledge, they often rely on a set of fundamental pre-study principles: reviewing outlines to grasp core concepts, summarizing key points to guide their focus and enhance understanding. However, such preparatory actions are notably absent in the current instruction tuning processes. This paper presents Re-Critic, an easily scalable rationale-augmented framework designed to incorporate fundamental rules and chain-of-thought (CoT) as a bridge to enhance reasoning abilities. Specifically, Re-Critic develops a visual rationale synthesizer that scalably augments raw instructions with rationale explanation. To probe more contextually grounded responses, Re-Critic employs an in-context self-critic mechanism to select response pairs for preference tuning. Experiments demonstrate that models fine-tuned with our rationale-augmented dataset yield gains that extend beyond hallucination-specific tasks to broader multimodal reasoning tasks.
Self-Generated Critiques Boost Reward Modeling for Language Models
Reward modeling is crucial for aligning large language models (LLMs) with human preferences, especially in reinforcement learning from human feedback (RLHF). However, current reward models mainly produce scalar scores and struggle to incorporate critiques in a natural language format. We hypothesize that predicting both critiques and the scalar reward would improve reward modeling ability. Motivated by this, we propose Critic-RM, a framework that improves reward models using self-generated critiques without extra supervision. Critic-RM employs a two-stage process: generating and filtering high-quality critiques, followed by joint fine-tuning on reward prediction and critique generation. Experiments across benchmarks show that Critic-RM improves reward modeling accuracy by 3.7%-7.3% compared to standard reward models and LLM judges, demonstrating strong performance and data efficiency. Additional studies further validate the effectiveness of generated critiques in rectifying flawed reasoning steps with 2.5%-3.2% gains in improving reasoning accuracy.
Critique-GRPO: Advancing LLM Reasoning with Natural Language and Numerical Feedback
Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar rewards, have significantly enhanced the complex reasoning capabilities of large language models (LLMs). Despite this success, we identify three key challenges encountered by RL with solely numerical feedback: performance plateaus, limited effectiveness of self-reflection, and persistent failures. We then demonstrate that RL-finetuned models, even after exhibiting performance plateaus, can generate correct refinements on persistently failed problems by leveraging natural language feedback in the form of critiques. Building on this insight, we propose Critique-GRPO, an online RL framework that integrates both natural language and numerical feedback for effective policy optimization. Critique-GRPO enables LLMs to learn from initial responses and critique-guided refinements simultaneously while maintaining exploration. Extensive experiments using Qwen2.5-7B-Base and Qwen3-8B-Base show that Critique-GRPO consistently outperforms supervised learning-based and RL-based fine-tuning approaches across eight challenging mathematical, STEM, and general reasoning tasks, improving average pass@1 scores by approximately 4.5% and 5%, respectively. Notably, Critique-GRPO surpasses a strong baseline that incorporates expert demonstrations within online RL. Further analysis reveals two critical insights about policy exploration: (1) higher entropy does not always guarantee efficient learning from exploration, and (2) longer responses do not necessarily lead to more effective exploration.
Critique-out-Loud Reward Models
Traditionally, reward models used for reinforcement learning from human feedback (RLHF) are trained to directly predict preference scores without leveraging the generation capabilities of the underlying large language model (LLM). This limits the capabilities of reward models as they must reason implicitly about the quality of a response, i.e., preference modeling must be performed in a single forward pass through the model. To enable reward models to reason explicitly about the quality of a response, we introduce Critique-out-Loud (CLoud) reward models. CLoud reward models operate by first generating a natural language critique of the assistant's response that is then used to predict a scalar reward for the quality of the response. We demonstrate the success of CLoud reward models for both Llama-3-8B and 70B base models: compared to classic reward models CLoud reward models improve pairwise preference classification accuracy on RewardBench by 4.65 and 5.84 percentage points for the 8B and 70B base models respectively. Furthermore, CLoud reward models lead to a Pareto improvement for win rate on ArenaHard when used as the scoring model for Best-of-N. Finally, we explore how to exploit the dynamic inference compute capabilities of CLoud reward models by performing self-consistency decoding for reward prediction.
DEBATE, TRAIN, EVOLVE: Self Evolution of Language Model Reasoning
Large language models (LLMs) have improved significantly in their reasoning through extensive training on massive datasets. However, relying solely on additional data for improvement is becoming increasingly impractical, highlighting the need for models to autonomously enhance their reasoning without external supervision. In this paper, we propose Debate, Train, Evolve (DTE), a novel ground truth-free training framework that uses multi-agent debate traces to evolve a single language model. We also introduce a new prompting strategy Reflect-Critique-Refine, to improve debate quality by explicitly instructing agents to critique and refine their reasoning. Extensive evaluations on five reasoning benchmarks with six open-weight models show that our DTE framework achieve substantial improvements, with an average accuracy gain of 8.92% on the challenging GSM-PLUS dataset. Furthermore, we observe strong cross-domain generalization, with an average accuracy gain of 5.8% on all other benchmarks, suggesting that our method captures general reasoning capabilities.
Scalable Oversight for Superhuman AI via Recursive Self-Critiquing
As AI capabilities increasingly surpass human proficiency in complex tasks, current alignment techniques including SFT and RLHF face fundamental challenges in ensuring reliable oversight. These methods rely on direct human assessment and become untenable when AI outputs exceed human cognitive thresholds. In response to this challenge, we explore two hypotheses: (1) critique of critique can be easier than critique itself, extending the widely-accepted observation that verification is easier than generation to the critique domain, as critique itself is a specialized form of generation; (2) this difficulty relationship is recursively held, suggesting that when direct evaluation is infeasible, performing high-order critiques (e.g., critique of critique of critique) offers a more tractable supervision pathway. To examine these hypotheses, we perform Human-Human, Human-AI, and AI-AI experiments across multiple tasks. Our results demonstrate encouraging evidence supporting these hypotheses and suggest that recursive self-critiquing is a promising direction for scalable oversight.
Learning to Retrieve and Reason on Knowledge Graph through Active Self-Reflection
Extensive research has investigated the integration of large language models (LLMs) with knowledge graphs to enhance the reasoning process. However, understanding how models perform reasoning utilizing structured graph knowledge remains underexplored. Most existing approaches rely on LLMs or retrievers to make binary judgments regarding the utilization of knowledge, which is too coarse. Meanwhile, there is still a lack of feedback mechanisms for reflection and correction throughout the entire reasoning path. This paper proposes an Active self-Reflection framework for knowledge Graph reasoning ARG, introducing for the first time an end-to-end training approach to achieve iterative reasoning grounded on structured graphs. Within the framework, the model leverages special tokens to actively determine whether knowledge retrieval is necessary, performs reflective critique based on the retrieved knowledge, and iteratively reasons over the knowledge graph. The reasoning paths generated by the model exhibit high interpretability, enabling deeper exploration of the model's understanding of structured knowledge. Ultimately, the proposed model achieves outstanding results compared to existing baselines in knowledge graph reasoning tasks.
Critique Ability of Large Language Models
Critical thinking is essential for rational decision-making and problem-solving. This skill hinges on the ability to provide precise and reasoned critiques and is a hallmark of human intelligence. In the era of large language models (LLMs), this study explores the ability of LLMs to deliver accurate critiques across various tasks. We are interested in this topic as a capable critic model could not only serve as a reliable evaluator, but also as a source of supervised signals for model tuning. Particularly, if a model can self-critique, it has the potential for autonomous self-improvement. To examine this, we introduce a unified evaluation framework for assessing the critique abilities of LLMs. We develop a benchmark called CriticBench, which comprises 3K high-quality natural language queries and corresponding model responses; and annotate the correctness of these responses. The benchmark cover tasks such as math problem-solving, code completion, and question answering. We evaluate multiple LLMs on the collected dataset and our analysis reveals several noteworthy insights: (1) Critique is generally challenging for most LLMs, and this capability often emerges only when models are sufficiently large. (2) In particular, self-critique is especially difficult. Even top-performing LLMs struggle to achieve satisfactory performance. (3) Models tend to have lower critique accuracy on problems where they are most uncertain. To this end, we introduce a simple yet effective baseline named self-check, which leverages self-critique to improve task performance for various models. We hope this study serves as an initial exploration into understanding the critique abilities of LLMs, and aims to inform future research, including the development of more proficient critic models and the application of critiques across diverse tasks.
CriticBench: Evaluating Large Language Models as Critic
Critique ability are crucial in the scalable oversight and self-improvement of Large Language Models (LLMs). While many recent studies explore the critique ability of LLMs to judge and refine flaws in generations, how to comprehensively and reliably measure the critique abilities of LLMs is under-explored. This paper introduces \shortname, a novel benchmark designed to comprehensively and reliably evaluate four key critique ability dimensions of LLMs: feedback, comparison, refinement and meta-feedback. \shortname~encompasses nine diverse tasks, each assessing the LLMs' ability to critique responses at varying levels of quality granularity. Our extensive evaluations of open-source and closed-source LLMs reveal intriguing relationships between the critique ability and tasks, response qualities, and model scales. Datasets, resources and evaluation toolkit for \shortname~will be publicly released at https://github.com/gmftbyGMFTBY/CriticBench.
LEMMA: Learning from Errors for MatheMatical Advancement in LLMs
Large language models (LLMs) have demonstrated remarkable reasoning capability in solving mathematical problems. However, existing approaches primarily focus on improving the quality of correct training data, e.g., distilling high-quality correct solutions from advanced models, neglecting the value contained in error data, potentially hindering the model's reflective ability. Though some studies attempt to leverage error data, they often involve complex mechanisms, such as Monte Carlo Tree Search (MCTS) to explore error nodes. In this work, we propose to enhance LLMs' reasoning ability by Learning from Errors for Mathematical Advancement (LEMMA). LEMMA constructs data consisting of an incorrect solution with an erroneous step and a reflection connection to a correct solution for fine-tuning. Specifically, we systematically analyze the model-generated error types and introduce an error-type grounded mistake augmentation method to collect diverse and representative errors. Correct solutions are either from fixing the errors or generating a fresh start. Through a model-aware smooth reflection connection, the erroneous solution is transferred to the correct one. By fine-tuning on the constructed dataset, the model is able to self-correct errors autonomously within the generation process without relying on external critique models. Experimental results demonstrate that LEMMA achieves significant performance improvements over other strong baselines.
Table-Critic: A Multi-Agent Framework for Collaborative Criticism and Refinement in Table Reasoning
Despite the remarkable capabilities of large language models (LLMs) in various reasoning tasks, they still struggle with table reasoning tasks, particularly in maintaining consistency throughout multi-step reasoning processes. While existing approaches have explored various decomposition strategies, they often lack effective mechanisms to identify and correct errors in intermediate reasoning steps, leading to cascading error propagation. To address these issues, we propose Table-Critic, a novel multi-agent framework that facilitates collaborative criticism and iterative refinement of the reasoning process until convergence to correct solutions. Our framework consists of four specialized agents: a Judge for error identification, a Critic for comprehensive critiques, a Refiner for process improvement, and a Curator for pattern distillation. To effectively deal with diverse and unpredictable error types, we introduce a self-evolving template tree that systematically accumulates critique knowledge through experience-driven learning and guides future reflections. Extensive experiments have demonstrated that Table-Critic achieves substantial improvements over existing methods, achieving superior accuracy and error correction rates while maintaining computational efficiency and lower solution degradation rate.
Two Heads Are Better Than One: Dual-Model Verbal Reflection at Inference-Time
Large Language Models (LLMs) often struggle with complex reasoning scenarios. While preference optimization methods enhance reasoning performance through training, they often lack transparency in why one reasoning outcome is preferred over another. Verbal reflection techniques improve explainability but are limited in LLMs' critique and refinement capacity. To address these challenges, we introduce a contrastive reflection synthesis pipeline that enhances the accuracy and depth of LLM-generated reflections. We further propose a dual-model reasoning framework within a verbal reinforcement learning paradigm, decoupling inference-time self-reflection into specialized, trained models for reasoning critique and refinement. Extensive experiments show that our framework outperforms traditional preference optimization methods across all evaluation metrics. Our findings also show that "two heads are better than one", demonstrating that a collaborative Reasoner-Critic model achieves superior reasoning performance and transparency, compared to single-model approaches.
Enabling Scalable Oversight via Self-Evolving Critic
Despite their remarkable performance, the development of Large Language Models (LLMs) faces a critical challenge in scalable oversight: providing effective feedback for tasks where human evaluation is difficult or where LLMs outperform humans. While there is growing interest in using LLMs for critique, current approaches still rely on human annotations or more powerful models, leaving the issue of enhancing critique capabilities without external supervision unresolved. We introduce SCRIT (Self-evolving CRITic), a framework that enables genuine self-evolution of critique abilities. Technically, SCRIT self-improves by training on synthetic data, generated by a contrastive-based self-critic that uses reference solutions for step-by-step critique, and a self-validation mechanism that ensures critique quality through correction outcomes. Implemented with Qwen2.5-72B-Instruct, one of the most powerful LLMs, SCRIT achieves up to a 10.3\% improvement on critique-correction and error identification benchmarks. Our analysis reveals that SCRIT's performance scales positively with data and model size, outperforms alternative approaches, and benefits critically from its self-validation component.
The Self 2.0: How AI-Enhanced Self-Clones Transform Self-Perception and Improve Presentation Skills
This study explores the impact of AI-generated digital self-clones on improving online presentation skills. We carried out a mixed-design experiment involving 44 international students, comparing self-recorded videos (control) with self-clone videos (AI group) for English presentation practice. The AI videos utilized voice cloning, face swapping, lip-sync, and body-language simulation to refine participants' original presentations in terms of repetition, filler words, and pronunciation. Machine-rated scores indicated enhancements in speech performance for both groups. Though the groups didn't significantly differ, the AI group exhibited a heightened depth of reflection, self-compassion, and a meaningful transition from a corrective to an enhancive approach to self-critique. Within the AI group, congruence between self-perception and AI self-clones resulted in diminished speech anxiety and increased enjoyment. Our findings recommend the ethical employment of digital self-clones to enhance the emotional and cognitive facets of skill development.
Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision
Training large language models (LLMs) to spend more time thinking and reflection before responding is crucial for effectively solving complex reasoning tasks in fields such as science, coding, and mathematics. However, the effectiveness of mechanisms like self-reflection and self-correction depends on the model's capacity to accurately assess its own performance, which can be limited by factors such as initial accuracy, question difficulty, and the lack of external feedback. In this paper, we delve into a two-player paradigm that separates the roles of reasoning and critique models, where the critique model provides step-level feedback to supervise the reasoning (actor) model during both test-time and train-time. We first propose AutoMathCritique, an automated and scalable framework for collecting critique data, resulting in a dataset of 76,321 responses paired with step-level feedback. Fine-tuning language models with this dataset enables them to generate natural language feedback for mathematical reasoning. We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time, especially when scaling up inference-time computation. Motivated by these findings, we introduce the critique-based supervision to the actor's self-training process, and propose a critique-in-the-loop self-improvement method. Experiments show that the method improves the actor's exploration efficiency and solution diversity, especially on challenging queries, leading to a stronger reasoning model. Lastly, we take the preliminary step to explore training self-talk reasoning models via critique supervision and showcase its potential. Our code and datasets are at https://mathcritique.github.io/{https://mathcritique.github.io/}.
Large Language Models Can Solve Real-World Planning Rigorously with Formal Verification Tools
Large Language Models (LLMs) struggle to directly generate correct plans for complex multi-constraint planning problems, even with self-verification and self-critique. For example, a U.S. domestic travel planning benchmark TravelPlanner was proposed in Xie et al. (2024), where the best LLM OpenAI o1-preview can only find viable travel plans with a 10% success rate given all needed information. In this work, we tackle this by proposing an LLM-based planning framework that formalizes and solves complex multi-constraint planning problems as constrained satisfiability problems, which are further consumed by sound and complete satisfiability solvers. We start with TravelPlanner as the primary use case and show that our framework achieves a success rate of 93.9% and is effective with diverse paraphrased prompts. More importantly, our framework has strong zero-shot generalizability, successfully handling unseen constraints in our newly created unseen international travel dataset and generalizing well to new fundamentally different domains. Moreover, when user input queries are infeasible, our framework can identify the unsatisfiable core, provide failure reasons, and offers personalized modification suggestions. We show that our framework can modify and solve for an average of 81.6% and 91.7% unsatisfiable queries from two datasets and prove with ablations that all key components of our framework are effective and necessary. Project page: https://sites.google.com/view/llm-rwplanning.
Large Language Models Cannot Self-Correct Reasoning Yet
Large Language Models (LLMs) have emerged as a groundbreaking technology with their unparalleled text generation capabilities across various applications. Nevertheless, concerns persist regarding the accuracy and appropriateness of their generated content. A contemporary methodology, self-correction, has been proposed as a remedy to these issues. Building upon this premise, this paper critically examines the role and efficacy of self-correction within LLMs, shedding light on its true potential and limitations. Central to our investigation is the notion of intrinsic self-correction, whereby an LLM attempts to correct its initial responses based solely on its inherent capabilities, without the crutch of external feedback. In the context of reasoning, our research indicates that LLMs struggle to self-correct their responses without external feedback, and at times, their performance might even degrade post self-correction. Drawing from these insights, we offer suggestions for future research and practical applications in this field.
Small Language Models Need Strong Verifiers to Self-Correct Reasoning
Self-correction has emerged as a promising solution to boost the reasoning performance of large language models (LLMs), where LLMs refine their solutions using self-generated critiques that pinpoint the errors. This work explores whether smaller-size (<= 13B) language models (LMs) have the ability of self-correction on reasoning tasks with minimal inputs from stronger LMs. We propose a novel pipeline that prompts smaller LMs to collect self-correction data that supports the training of self-refinement abilities. First, we leverage correct solutions to guide the model in critiquing their incorrect responses. Second, the generated critiques, after filtering, are used for supervised fine-tuning of the self-correcting reasoner through solution refinement. Our experimental results show improved self-correction abilities of two models on five datasets spanning math and commonsense reasoning, with notable performance gains when paired with a strong GPT-4-based verifier, though limitations are identified when using a weak self-verifier for determining when to correct.
Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement
Prompting methods such as Chain-of-Thought (CoT) have shed new light on enhancing the reasoning capabilities of large language models, and researchers have extensively explored the generation process of rationales and answers. However, they have overlooked the potential challenges posed by the poor quality of reasoning problems, which may influence the reasoning performance significantly. In this work, we propose Self-Polish (SP), a novel method that facilitates the model's problem-solving process by prompting them to progressively refine the given problems to be more comprehensible and solvable. Specifically, the method teaches models to eliminate irrelevant information, rearrange the logic structure and organize local conditions into new ones parallelly. SP is orthogonal to all other prompting methods, making it convenient to integrate with state-of-the-art techniques for further improvement. We conduct thorough experiments on five benchmarks to illustrate the effectiveness of the proposed method. For example, with Text-davinci-003, our method boosts the performance of standard few-shot prompting by 8.0% on GSM8K and 17.8% on MultiArith; it also improves the performance of CoT by 6.0% on GSM8K and 6.0% on MathQA, respectively. Furthermore, our method also showcases impressive performance on robustness evaluation.
Automatically Correcting Large Language Models: Surveying the landscape of diverse self-correction strategies
Large language models (LLMs) have demonstrated remarkable performance across a wide array of NLP tasks. However, their efficacy is undermined by undesired and inconsistent behaviors, including hallucination, unfaithful reasoning, and toxic content. A promising approach to rectify these flaws is self-correction, where the LLM itself is prompted or guided to fix problems in its own output. Techniques leveraging automated feedback -- either produced by the LLM itself or some external system -- are of particular interest as they are a promising way to make LLM-based solutions more practical and deployable with minimal human feedback. This paper presents a comprehensive review of this emerging class of techniques. We analyze and taxonomize a wide array of recent work utilizing these strategies, including training-time, generation-time, and post-hoc correction. We also summarize the major applications of this strategy and conclude by discussing future directions and challenges.
Multi-Level Feedback Generation with Large Language Models for Empowering Novice Peer Counselors
Realistic practice and tailored feedback are key processes for training peer counselors with clinical skills. However, existing mechanisms of providing feedback largely rely on human supervision. Peer counselors often lack mechanisms to receive detailed feedback from experienced mentors, making it difficult for them to support the large number of people with mental health issues who use peer counseling. Our work aims to leverage large language models to provide contextualized and multi-level feedback to empower peer counselors, especially novices, at scale. To achieve this, we co-design with a group of senior psychotherapy supervisors to develop a multi-level feedback taxonomy, and then construct a publicly available dataset with comprehensive feedback annotations of 400 emotional support conversations. We further design a self-improvement method on top of large language models to enhance the automatic generation of feedback. Via qualitative and quantitative evaluation with domain experts, we demonstrate that our method minimizes the risk of potentially harmful and low-quality feedback generation which is desirable in such high-stakes scenarios.
Internal Consistency and Self-Feedback in Large Language Models: A Survey
Large language models (LLMs) are expected to respond accurately but often exhibit deficient reasoning or generate hallucinatory content. To address these, studies prefixed with ``Self-'' such as Self-Consistency, Self-Improve, and Self-Refine have been initiated. They share a commonality: involving LLMs evaluating and updating itself to mitigate the issues. Nonetheless, these efforts lack a unified perspective on summarization, as existing surveys predominantly focus on categorization without examining the motivations behind these works. In this paper, we summarize a theoretical framework, termed Internal Consistency, which offers unified explanations for phenomena such as the lack of reasoning and the presence of hallucinations. Internal Consistency assesses the coherence among LLMs' latent layer, decoding layer, and response layer based on sampling methodologies. Expanding upon the Internal Consistency framework, we introduce a streamlined yet effective theoretical framework capable of mining Internal Consistency, named Self-Feedback. The Self-Feedback framework consists of two modules: Self-Evaluation and Self-Update. This framework has been employed in numerous studies. We systematically classify these studies by tasks and lines of work; summarize relevant evaluation methods and benchmarks; and delve into the concern, ``Does Self-Feedback Really Work?'' We propose several critical viewpoints, including the ``Hourglass Evolution of Internal Consistency'', ``Consistency Is (Almost) Correctness'' hypothesis, and ``The Paradox of Latent and Explicit Reasoning''. Furthermore, we outline promising directions for future research. We have open-sourced the experimental code, reference list, and statistical data, available at https://github.com/IAAR-Shanghai/ICSFSurvey.
Confidence Matters: Revisiting Intrinsic Self-Correction Capabilities of Large Language Models
The recent success of Large Language Models (LLMs) has catalyzed an increasing interest in their self-correction capabilities. This paper presents a comprehensive investigation into the intrinsic self-correction of LLMs, attempting to address the ongoing debate about its feasibility. Our research has identified an important latent factor - the "confidence" of LLMs - during the self-correction process. Overlooking this factor may cause the models to over-criticize themselves, resulting in unreliable conclusions regarding the efficacy of self-correction. We have experimentally observed that LLMs possess the capability to understand the "confidence" in their own responses. It motivates us to develop an "If-or-Else" (IoE) prompting framework, designed to guide LLMs in assessing their own "confidence", facilitating intrinsic self-corrections. We conduct extensive experiments and demonstrate that our IoE-based Prompt can achieve a consistent improvement regarding the accuracy of self-corrected responses over the initial answers. Our study not only sheds light on the underlying factors affecting self-correction in LLMs, but also introduces a practical framework that utilizes the IoE prompting principle to efficiently improve self-correction capabilities with "confidence". The code is available at https://github.com/MBZUAI-CLeaR/IoE-Prompting.git.
Self-Contrast: Better Reflection Through Inconsistent Solving Perspectives
The reflection capacity of Large Language Model (LLM) has garnered extensive attention. A post-hoc prompting strategy, e.g., reflexion and self-refine, refines LLM's response based on self-evaluated or external feedback. However, recent research indicates without external feedback, LLM's intrinsic reflection is unstable. Our investigation unveils that the key bottleneck is the quality of the self-evaluated feedback. We find LLMs often exhibit overconfidence or high randomness when self-evaluate, offering stubborn or inconsistent feedback, which causes poor reflection. To remedy this, we advocate Self-Contrast: It adaptively explores diverse solving perspectives tailored to the request, contrasts the differences, and summarizes these discrepancies into a checklist which could be used to re-examine and eliminate discrepancies. Our method endows LLM with diverse perspectives to alleviate stubborn biases. Moreover, their discrepancies indicate potential errors or inherent uncertainties that LLM often overlooks. Reflecting upon these can catalyze more accurate and stable reflection. Experiments conducted on a series of reasoning and translation tasks with different LLMs serve to underscore the effectiveness and generality of our strategy.
Instruct-of-Reflection: Enhancing Large Language Models Iterative Reflection Capabilities via Dynamic-Meta Instruction
Self-reflection for Large Language Models (LLMs) has gained significant attention. Existing approaches involve models iterating and improving their previous responses based on LLMs' internal reflection ability or external feedback. However, recent research has raised doubts about whether intrinsic self-correction without external feedback may even degrade performance. Based on our empirical evidence, we find that current static reflection methods may lead to redundant, drift, and stubborn issues. To mitigate this, we introduce Instruct-of-Reflection (IoRT), a novel and general reflection framework that leverages dynamic-meta instruction to enhance the iterative reflection capability of LLMs. Specifically, we propose the instructor driven by the meta-thoughts and self-consistency classifier, generates various instructions, including refresh, stop, and select, to guide the next reflection iteration. Our experiments demonstrate that IoRT achieves an average improvement of 10.1% over established baselines in mathematical and commonsense reasoning tasks, highlighting its efficacy and applicability.
Meta-Rewarding Language Models: Self-Improving Alignment with LLM-as-a-Meta-Judge
Large Language Models (LLMs) are rapidly surpassing human knowledge in many domains. While improving these models traditionally relies on costly human data, recent self-rewarding mechanisms (Yuan et al., 2024) have shown that LLMs can improve by judging their own responses instead of relying on human labelers. However, existing methods have primarily focused on improving model responses rather than judgment capabilities, resulting in rapid saturation during iterative training. To address this issue, we introduce a novel Meta-Rewarding step to the self-improvement process, where the model judges its own judgements and uses that feedback to refine its judgment skills. Surprisingly, this unsupervised approach improves the model's ability to judge {\em and} follow instructions, as demonstrated by a win rate improvement of Llama-3-8B-Instruct from 22.9% to 39.4% on AlpacaEval 2, and 20.6% to 29.1% on Arena-Hard. These results strongly suggest the potential for self-improving models without human supervision.
CritiqueLLM: Scaling LLM-as-Critic for Effective and Explainable Evaluation of Large Language Model Generation
Since the natural language processing (NLP) community started to make large language models (LLMs), such as GPT-4, act as a critic to evaluate the quality of generated texts, most of them only train a critique generation model of a specific scale on specific datasets. We argue that a comprehensive investigation on the key factor of LLM-based evaluation models, such as scaling properties, is lacking, so that it is still inconclusive whether these models have potential to replace GPT-4's evaluation in practical scenarios. In this paper, we propose a new critique generation model called CritiqueLLM, which includes a dialogue-based prompting method for high-quality referenced / reference-free evaluation data. Experimental results show that our model can achieve comparable evaluation performance to GPT-4 especially in system-level correlations, and even outperform GPT-4 in 3 out of 8 tasks in a challenging reference-free setting. We conduct detailed analysis to show promising scaling properties of our model in the quality of generated critiques. We also demonstrate that our generated critiques can act as scalable feedback to directly improve the generation quality of LLMs.
Language Models (Mostly) Know What They Know
We study whether language models can evaluate the validity of their own claims and predict which questions they will be able to answer correctly. We first show that larger models are well-calibrated on diverse multiple choice and true/false questions when they are provided in the right format. Thus we can approach self-evaluation on open-ended sampling tasks by asking models to first propose answers, and then to evaluate the probability "P(True)" that their answers are correct. We find encouraging performance, calibration, and scaling for P(True) on a diverse array of tasks. Performance at self-evaluation further improves when we allow models to consider many of their own samples before predicting the validity of one specific possibility. Next, we investigate whether models can be trained to predict "P(IK)", the probability that "I know" the answer to a question, without reference to any particular proposed answer. Models perform well at predicting P(IK) and partially generalize across tasks, though they struggle with calibration of P(IK) on new tasks. The predicted P(IK) probabilities also increase appropriately in the presence of relevant source materials in the context, and in the presence of hints towards the solution of mathematical word problems. We hope these observations lay the groundwork for training more honest models, and for investigating how honesty generalizes to cases where models are trained on objectives other than the imitation of human writing.
Iterative Deepening Sampling for Large Language Models
The recent release of OpenAI's o1 models and other similar frameworks showcasing test-time scaling laws has demonstrated their exceptional capability to tackle complex reasoning tasks. Inspired by this, subsequent research has revealed that such test-time scaling laws hinge on the model's ability to search both within a single response (intra-response) and across multiple responses (inter-response) during training. Crucially, beyond selecting a single optimal response, the model must also develop robust self-correction capabilities within its own outputs. However, training models to achieve effective self-evaluation and self-correction remains a significant challenge, heavily dependent on the quality of self-reflection data. In this paper, we address this challenge by focusing on enhancing the quality of self-reflection data generation for complex problem-solving, which can subsequently improve the training of next-generation large language models (LLMs). Specifically, we explore how manually triggering a model's self-correction mechanisms can improve performance on challenging reasoning tasks. To this end, we propose a novel iterative deepening sampling algorithm framework designed to enhance self-correction and generate higher-quality samples. Through extensive experiments on Math500 and AIME benchmarks, we demonstrate that our method achieves a higher success rate on difficult tasks and provide detailed ablation studies to analyze its effectiveness across diverse settings.
The Critique of Critique
Critique, as a natural language description for assessing the quality of model-generated content, has been proven to play an essential role in the training, evaluation, and refinement of Large Language Models (LLMs). However, there is a lack of principled understanding in evaluating the quality of the critique itself. In this paper, we pioneer the critique of critique, termed MetaCritique, which is a framework to evaluate the critique from two aspects, i.e., factuality as precision score and comprehensiveness as recall score. We calculate the harmonic mean of precision and recall as the overall rating called F1 score. To obtain a reliable evaluation outcome, we propose Atomic Information Units (AIUs), which describe the critique in a more fine-grained manner. MetaCritique takes each AIU into account and aggregates each AIU's judgment for the overall score. Moreover, given the evaluation process involves intricate reasoning, our MetaCritique provides a natural language rationale to support each judgment. We construct a meta-evaluation dataset containing 300 critiques (2653 AIUs) across four tasks (question answering, reasoning, entailment, and summarization), and we conduct a comparative study to demonstrate the feasibility and effectiveness. Experiments also show superior critique judged by MetaCritique leads to better refinement, indicating generative artificial intelligence indeed has the potential to be significantly advanced with our MetaCritique. We will release relevant code and meta-evaluation datasets at https://github.com/GAIR-NLP/MetaCritique.
CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing
Recent developments in large language models (LLMs) have been impressive. However, these models sometimes show inconsistencies and problematic behavior, such as hallucinating facts, generating flawed code, or creating offensive and toxic content. Unlike these models, humans typically utilize external tools to cross-check and refine their initial content, like using a search engine for fact-checking, or a code interpreter for debugging. Inspired by this observation, we introduce a framework called CRITIC that allows LLMs, which are essentially "black boxes" to validate and progressively amend their own outputs in a manner similar to human interaction with tools. More specifically, starting with an initial output, CRITIC interacts with appropriate tools to evaluate certain aspects of the text, and then revises the output based on the feedback obtained during this validation process. Comprehensive evaluations involving free-form question answering, mathematical program synthesis, and toxicity reduction demonstrate that CRITIC consistently enhances the performance of LLMs. Meanwhile, our research highlights the crucial importance of external feedback in promoting the ongoing self-improvement of LLMs.
Training Language Models to Self-Correct via Reinforcement Learning
Self-correction is a highly desirable capability of large language models (LLMs), yet it has consistently been found to be largely ineffective in modern LLMs. Existing approaches for training self-correction either require multiple models or rely on a more capable model or other forms of supervision. To this end, we develop a multi-turn online reinforcement learning (RL) approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data. To build SCoRe, we first show that variants of supervised fine-tuning (SFT) on offline model-generated correction traces are insufficient for instilling self-correction behavior. In particular, we observe that training via SFT either suffers from a distribution mismatch between the training data and the model's own responses or implicitly prefers only a certain mode of correction behavior that is often not effective at test time. SCoRe addresses these challenges by training under the model's own distribution of self-generated correction traces and using appropriate regularization to steer the learning process into learning a self-correction strategy that is effective at test time as opposed to simply fitting high-reward responses for a given prompt. This regularization prescribes running a first phase of RL on a base model to generate a policy initialization that is less susceptible to collapse and then using a reward bonus to amplify self-correction during training. When applied to Gemini 1.0 Pro and 1.5 Flash models, we find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on the MATH and HumanEval benchmarks.
Can LLMs Learn from Previous Mistakes? Investigating LLMs' Errors to Boost for Reasoning
Recent works have shown the benefits to LLMs from fine-tuning golden-standard Chain-of-Thought (CoT) rationales or using them as correct examples in few-shot prompting. While humans can indeed imitate correct examples, learning from our mistakes is another vital aspect of human cognition. Hence, a question naturally arises: can LLMs learn and benefit from their mistakes, especially for their reasoning? This study investigates this problem from both the prompting and model-tuning perspectives. We begin by introducing CoTErrorSet, a new benchmark with 609,432 questions, each designed with both correct and error references, and demonstrating the types and reasons for making such mistakes. To explore the effectiveness of those mistakes, we design two methods: (1) Self-rethinking prompting guides LLMs to rethink whether they have made similar previous mistakes; and (2) Mistake tuning involves finetuning models in both correct and incorrect reasoning domains, rather than only tuning models to learn ground truth in traditional methodology. We conduct a series of experiments to prove LLMs can obtain benefits from mistakes in both directions. Our two methods offer potentially cost-effective strategies by leveraging errors to enhance reasoning capabilities, which costs significantly less than creating meticulously hand-crafted golden references. We ultimately make a thorough analysis of the reasons behind LLMs' errors, which provides directions that future research needs to overcome. CoTErrorSet will be published soon on \url{https://github.com/YookiTong/Learn-from-Mistakes-CotErrorSet}.
Self-Consistency Preference Optimization
Self-alignment, whereby models learn to improve themselves without human annotation, is a rapidly growing research area. However, existing techniques often fail to improve complex reasoning tasks due to the difficulty of assigning correct rewards. An orthogonal approach that is known to improve correctness is self-consistency, a method applied at inference time based on multiple sampling in order to find the most consistent answer. In this work, we extend the self-consistency concept to help train models. We thus introduce self-consistency preference optimization (ScPO), which iteratively trains consistent answers to be preferred over inconsistent ones on unsupervised new problems. We show ScPO leads to large improvements over conventional reward model training on reasoning tasks such as GSM8K and MATH, closing the gap with supervised training with gold answers or preferences, and that combining ScPO with standard supervised learning improves results even further. On ZebraLogic, ScPO finetunes Llama-3 8B to be superior to Llama-3 70B, Gemma-2 27B, and Claude-3 Haiku.
Self-reflecting Large Language Models: A Hegelian Dialectical Approach
Investigating NLP through a philosophical lens has recently caught researcher's eyes as it connects computational methods with classical schools of philosophy. This paper introduces a philosophical approach inspired by the Hegelian Dialectic for LLMs' self-reflection, utilizing a self-dialectical approach to emulate internal critiques and then synthesize new ideas by resolving the contradicting points. Moreover, this paper investigates the effect of LLMs' temperature for generation by establishing a dynamic annealing approach, which promotes the creativity in the early stages and gradually refines it by focusing on the nuances, as well as a fixed temperature strategy for generation. Our proposed approach is examined to determine its ability to generate novel ideas from an initial proposition. Additionally, a Multi Agent Majority Voting (MAMV) strategy is leveraged to assess the validity and novelty of the generated ideas, which proves beneficial in the absence of domain experts. Our experiments show promise in generating new ideas and provide a stepping stone for future research.
Critiques of World Models
World Model, the supposed algorithmic surrogate of the real-world environment which biological agents experience with and act upon, has been an emerging topic in recent years because of the rising needs to develop virtual agents with artificial (general) intelligence. There has been much debate on what a world model really is, how to build it, how to use it, and how to evaluate it. In this essay, starting from the imagination in the famed Sci-Fi classic Dune, and drawing inspiration from the concept of "hypothetical thinking" in psychology literature, we offer critiques of several schools of thoughts on world modeling, and argue the primary goal of a world model to be simulating all actionable possibilities of the real world for purposeful reasoning and acting. Building on the critiques, we propose a new architecture for a general-purpose world model, based on hierarchical, multi-level, and mixed continuous/discrete representations, and a generative and self-supervision learning framework, with an outlook of a Physical, Agentic, and Nested (PAN) AGI system enabled by such a model.
Specification Self-Correction: Mitigating In-Context Reward Hacking Through Test-Time Refinement
Language models (LMs) are susceptible to in-context reward hacking, where they exploit flaws in tainted or faulty written specifications or rubrics to achieve high scores without fulfilling the user's true intent. We introduce Specification Self-Correction (SSC), a novel, test-time framework that enables an LM to identify and correct flaws within its own guiding specification. SSC employs a multi-step inference process where the model first generates a response based on a potentially tainted specification, critiques its output, and then revises the specification itself to remove the exploitable loophole. A final, more robust response is then generated using this self-corrected specification. Across experiments spanning creative writing and agentic coding tasks with several LMs, we demonstrate that while models initially game tainted specifications in 50-70\% of cases, the SSC process reduces this vulnerability by over 90\%. This dynamic repair occurs at inference time, requires no weight modification, and leads to more robustly aligned model behavior. Code at https://github.com/vicgalle/specification-self-correction .
Teaching Language Models to Self-Improve by Learning from Language Feedback
Aligning Large Language Models (LLMs) with human intentions and values is crucial yet challenging. Current methods primarily rely on human preferences, which are costly and insufficient in capturing nuanced feedback expressed in natural language. In this paper, we present Self-Refinement Tuning (SRT), a method that leverages model feedback for alignment, thereby reducing reliance on human annotations. SRT uses a base language model (e.g., Tulu2) to generate initial responses, which are critiqued and refined by a more advanced model (e.g., GPT-4-Turbo). This process enables the base model to self-evaluate and improve its outputs, facilitating continuous learning. SRT further optimizes the model by learning from its self-generated feedback and refinements, creating a feedback loop that promotes model improvement. Our empirical evaluations demonstrate that SRT significantly outperforms strong baselines across diverse tasks and model sizes. When applied to a 70B parameter model, SRT increases the win rate from 9.6\% to 25.8\% on the AlpacaEval 2.0 benchmark, surpassing well-established systems such as GPT-4-0314, Claude 2, and Gemini. Our analysis highlights the crucial role of language feedback in the success of SRT, suggesting potential for further exploration in this direction.
Trust, But Verify: A Self-Verification Approach to Reinforcement Learning with Verifiable Rewards
Large Language Models (LLMs) show great promise in complex reasoning, with Reinforcement Learning with Verifiable Rewards (RLVR) being a key enhancement strategy. However, a prevalent issue is ``superficial self-reflection'', where models fail to robustly verify their own outputs. We introduce RISE (Reinforcing Reasoning with Self-Verification), a novel online RL framework designed to tackle this. RISE explicitly and simultaneously trains an LLM to improve both its problem-solving and self-verification abilities within a single, integrated RL process. The core mechanism involves leveraging verifiable rewards from an outcome verifier to provide on-the-fly feedback for both solution generation and self-verification tasks. In each iteration, the model generates solutions, then critiques its own on-policy generated solutions, with both trajectories contributing to the policy update. Extensive experiments on diverse mathematical reasoning benchmarks show that RISE consistently improves model's problem-solving accuracy while concurrently fostering strong self-verification skills. Our analyses highlight the advantages of online verification and the benefits of increased verification compute. Additionally, RISE models exhibit more frequent and accurate self-verification behaviors during reasoning. These advantages reinforce RISE as a flexible and effective path towards developing more robust and self-aware reasoners.
Training Models to Generate, Recognize, and Reframe Unhelpful Thoughts
Many cognitive approaches to well-being, such as recognizing and reframing unhelpful thoughts, have received considerable empirical support over the past decades, yet still lack truly widespread adoption in self-help format. A barrier to that adoption is a lack of adequately specific and diverse dedicated practice material. This work examines whether current language models can be leveraged to both produce a virtually unlimited quantity of practice material illustrating standard unhelpful thought patterns matching specific given contexts, and generate suitable positive reframing proposals. We propose PATTERNREFRAME, a novel dataset of about 10k examples of thoughts containing unhelpful thought patterns conditioned on a given persona, accompanied by about 27k positive reframes. By using this dataset to train and/or evaluate current models, we show that existing models can already be powerful tools to help generate an abundance of tailored practice material and hypotheses, with no or minimal additional model training required.
Learning New Skills after Deployment: Improving open-domain internet-driven dialogue with human feedback
Frozen models trained to mimic static datasets can never improve their performance. Models that can employ internet-retrieval for up-to-date information and obtain feedback from humans during deployment provide the promise of both adapting to new information, and improving their performance. In this work we study how to improve internet-driven conversational skills in such a learning framework. We collect deployment data, which we make publicly available, of human interactions, and collect various types of human feedback -- including binary quality measurements, free-form text feedback, and fine-grained reasons for failure. We then study various algorithms for improving from such feedback, including standard supervised learning, rejection sampling, model-guiding and reward-based learning, in order to make recommendations on which type of feedback and algorithms work best. We find the recently introduced Director model (Arora et al., '22) shows significant improvements over other existing approaches.
Mitigating Tail Narrowing in LLM Self-Improvement via Socratic-Guided Sampling
Self-improvement methods enable large language models (LLMs) to generate solutions themselves and iteratively train on filtered, high-quality rationales. This process proves effective and reduces the reliance on human supervision in LLMs' reasoning, but the performance soon plateaus. We delve into the process and find that models tend to over-sample on easy queries and under-sample on queries they have yet to master. As iterations proceed, this imbalance in sampling is exacerbated, leading to a long-tail distribution where solutions to difficult queries almost diminish. This phenomenon limits the performance gain of self-improving models. A straightforward solution is brute-force sampling to balance the distribution, which significantly raises computational costs. In this paper, we introduce Guided Self-Improvement (GSI), a strategy aimed at improving the efficiency of sampling challenging heavy-tailed data. It leverages Socratic-style guidance signals to help LLM reasoning with complex queries, reducing the exploration effort and minimizing computational overhead. Experiments on four models across diverse mathematical tasks show that GSI strikes a balance between performance and efficiency, while also being effective on held-out tasks.
Training Language Models to Critique With Multi-agent Feedback
Critique ability, a meta-cognitive capability of humans, presents significant challenges for LLMs to improve. Recent works primarily rely on supervised fine-tuning (SFT) using critiques generated by a single LLM like GPT-4. However, these model-generated critiques often exhibit flaws due to the inherent complexity of the critique. Consequently, fine-tuning LLMs on such flawed critiques typically limits the model's performance and propagates these flaws into the learned model. To overcome these challenges, this paper proposes a novel data generation pipeline, named MultiCritique, that improves the critique ability of LLMs by utilizing multi-agent feedback in both the SFT and reinforcement learning (RL) stages. First, our data generation pipeline aggregates high-quality critiques from multiple agents instead of a single model, with crucial information as input for simplifying the critique. Furthermore, our pipeline improves the preference accuracy of critique quality through multi-agent feedback, facilitating the effectiveness of RL in improving the critique ability of LLMs. Based on our proposed MultiCritique data generation pipeline, we construct the MultiCritiqueDataset for the SFT and RL fine-tuning stages. Extensive experimental results on two benchmarks demonstrate: 1) the superior quality of our constructed SFT dataset compared to existing critique datasets; 2) additional improvements to the critique ability of LLMs brought by the RL stage. Notably, our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models, approaching the performance of advanced 70B LLMs and GPT-4. Codes, datasets and model weights will be publicly available.
Mind the Gap: Examining the Self-Improvement Capabilities of Large Language Models
Self-improvement is a mechanism in Large Language Model (LLM) pre-training, post-training and test-time inference. We explore a framework where the model verifies its own outputs, filters or reweights data based on this verification, and distills the filtered data. Despite several empirical successes, a fundamental understanding is still lacking. In this work, we initiate a comprehensive, modular and controlled study on LLM self-improvement. We provide a mathematical formulation for self-improvement, which is largely governed by a quantity which we formalize as the generation-verification gap. Through experiments with various model families and tasks, we discover a scaling phenomenon of self-improvement -- a variant of the generation-verification gap scales monotonically with the model pre-training flops. We also examine when self-improvement is possible, an iterative self-improvement procedure, and ways to improve its performance. Our findings not only advance understanding of LLM self-improvement with practical implications, but also open numerous avenues for future research into its capabilities and boundaries.
Self-Reflection in LLM Agents: Effects on Problem-Solving Performance
In this study, we investigated the effects of self-reflection in large language models (LLMs) on problem-solving performance. We instructed nine popular LLMs to answer a series of multiple-choice questions to provide a performance baseline. For each incorrectly answered question, we instructed eight types of self-reflecting LLM agents to reflect on their mistakes and provide themselves with guidance to improve problem-solving. Then, using this guidance, each self-reflecting agent attempted to re-answer the same questions. Our results indicate that LLM agents are able to significantly improve their problem-solving performance through self-reflection (p < 0.001). In addition, we compared the various types of self-reflection to determine their individual contribution to performance. All code and data are available on GitHub at https://github.com/matthewrenze/self-reflection
Enable Language Models to Implicitly Learn Self-Improvement From Data
Large Language Models (LLMs) have demonstrated remarkable capabilities in open-ended text generation tasks. However, the inherent open-ended nature of these tasks implies that there is always room for improvement in the quality of model responses. To address this challenge, various approaches have been proposed to enhance the performance of LLMs. There has been a growing focus on enabling LLMs to self-improve their response quality, thereby reducing the reliance on extensive human annotation efforts for collecting diverse and high-quality training data. Recently, prompting-based methods have been widely explored among self-improvement methods owing to their effectiveness, efficiency, and convenience. However, those methods usually require explicitly and thoroughly written rubrics as inputs to LLMs. It is expensive and challenging to manually derive and provide all necessary rubrics with a real-world complex goal for improvement (e.g., being more helpful and less harmful). To this end, we propose an ImPlicit Self-ImprovemenT (PIT) framework that implicitly learns the improvement goal from human preference data. PIT only requires preference data that are used to train reward models without extra human efforts. Specifically, we reformulate the training objective of reinforcement learning from human feedback (RLHF) -- instead of maximizing response quality for a given input, we maximize the quality gap of the response conditioned on a reference response. In this way, PIT is implicitly trained with the improvement goal of better aligning with human preferences. Experiments on two real-world datasets and one synthetic dataset show that our method significantly outperforms prompting-based methods.
Self-Correcting Code Generation Using Small Language Models
Self-correction has demonstrated potential in code generation by allowing language models to revise and improve their outputs through successive refinement. Recent studies have explored prompting-based strategies that incorporate verification or feedback loops using proprietary models, as well as training-based methods that leverage their strong reasoning capabilities. However, whether smaller models possess the capacity to effectively guide their outputs through self-reflection remains unexplored. Our findings reveal that smaller models struggle to exhibit reflective revision behavior across both self-correction paradigms. In response, we introduce CoCoS, an approach designed to enhance the ability of small language models for multi-turn code correction. Specifically, we propose an online reinforcement learning objective that trains the model to confidently maintain correct outputs while progressively correcting incorrect outputs as turns proceed. Our approach features an accumulated reward function that aggregates rewards across the entire trajectory and a fine-grained reward better suited to multi-turn correction scenarios. This facilitates the model in enhancing initial response quality while achieving substantial improvements through self-correction. With 1B-scale models, CoCoS achieves improvements of 35.8% on the MBPP and 27.7% on HumanEval compared to the baselines.
Factored Verification: Detecting and Reducing Hallucination in Summaries of Academic Papers
Hallucination plagues even frontier LLMs--but how bad is it really for summarizing academic papers? We evaluate Factored Verification, a simple automated method for detecting hallucinations in abstractive summaries. This method sets a new SotA on hallucination detection in the summarization task of the HaluEval benchmark, achieving 76.2% accuracy. We then use this method to estimate how often language models hallucinate when summarizing across multiple academic papers and find 0.62 hallucinations in the average ChatGPT (16k) summary, 0.84 for GPT-4, and 1.55 for Claude 2. We ask models to self-correct using Factored Critiques and find that this lowers the number of hallucinations to 0.49 for ChatGPT, 0.46 for GPT-4, and 0.95 for Claude 2. The hallucinations we find are often subtle, so we advise caution when using models to synthesize academic papers.
Don't Take the Premise for Granted: Evaluating the Premise Critique Ability of Large Language Models
Large language models (LLMs) have witnessed rapid advancements, demonstrating remarkable capabilities. However, a notable vulnerability persists: LLMs often uncritically accept flawed or contradictory premises, leading to inefficient reasoning and unreliable outputs. This emphasizes the significance of possessing the Premise Critique Ability for LLMs, defined as the capacity to proactively identify and articulate errors in input premises. Most existing studies assess LLMs' reasoning ability in ideal settings, largely ignoring their vulnerabilities when faced with flawed premises. Thus, we introduce the Premise Critique Bench (PCBench), designed by incorporating four error types across three difficulty levels, paired with multi-faceted evaluation metrics. We conducted systematic evaluations of 15 representative LLMs. Our findings reveal: (1) Most models rely heavily on explicit prompts to detect errors, with limited autonomous critique; (2) Premise critique ability depends on question difficulty and error type, with direct contradictions being easier to detect than complex or procedural errors; (3) Reasoning ability does not consistently correlate with the premise critique ability; (4) Flawed premises trigger overthinking in reasoning models, markedly lengthening responses due to repeated attempts at resolving conflicts. These insights underscore the urgent need to enhance LLMs' proactive evaluation of input validity, positioning premise critique as a foundational capability for developing reliable, human-centric systems. The code is available at https://github.com/MLGroupJLU/Premise_Critique.
Reflect, Retry, Reward: Self-Improving LLMs via Reinforcement Learning
We explore a method for improving the performance of large language models through self-reflection and reinforcement learning. By incentivizing the model to generate better self-reflections when it answers incorrectly, we demonstrate that a model's ability to solve complex, verifiable tasks can be enhanced even when generating synthetic data is infeasible and only binary feedback is available. Our framework operates in two stages: first, upon failing a given task, the model generates a self-reflective commentary analyzing its previous attempt; second, the model is given another attempt at the task with the self-reflection in context. If the subsequent attempt succeeds, the tokens generated during the self-reflection phase are rewarded. Our experimental results show substantial performance gains across a variety of model architectures, as high as 34.7% improvement at math equation writing and 18.1% improvement at function calling. Notably, smaller fine-tuned models (1.5 billion to 7 billion parameters) outperform models in the same family that are 10 times larger. Our novel paradigm is thus an exciting pathway to more useful and reliable language models that can self-improve on challenging tasks with limited external feedback.
SELF: Language-Driven Self-Evolution for Large Language Model
Large Language Models (LLMs) have showcased remarkable versatility across diverse domains. However, the pathway toward autonomous model development, a cornerstone for achieving human-level learning and advancing autonomous AI, remains largely uncharted. We introduce an innovative approach, termed "SELF" (Self-Evolution with Language Feedback). This methodology empowers LLMs to undergo continual self-evolution. Furthermore, SELF employs language-based feedback as a versatile and comprehensive evaluative tool, pinpointing areas for response refinement and bolstering the stability of self-evolutionary training. Initiating with meta-skill learning, SELF acquires foundational meta-skills with a focus on self-feedback and self-refinement. These meta-skills are critical, guiding the model's subsequent self-evolution through a cycle of perpetual training with self-curated data, thereby enhancing its intrinsic abilities. Given unlabeled instructions, SELF equips the model with the capability to autonomously generate and interactively refine responses. This synthesized training data is subsequently filtered and utilized for iterative fine-tuning, enhancing the model's capabilities. Experimental results on representative benchmarks substantiate that SELF can progressively advance its inherent abilities without the requirement of human intervention, thereby indicating a viable pathway for autonomous model evolution. Additionally, SELF can employ online self-refinement strategy to produce responses of superior quality. In essence, the SELF framework signifies a progressive step towards autonomous LLM development, transforming the LLM from a mere passive recipient of information into an active participant in its own evolution.
Self Rewarding Self Improving
We demonstrate that large language models can effectively self-improve through self-judging without requiring reference solutions, leveraging the inherent asymmetry between generating and verifying solutions. Our experiments on Countdown puzzles and MIT Integration Bee problems show that models can provide reliable reward signals without ground truth answers, enabling reinforcement learning in domains previously not possible. By implementing self-judging, we achieve significant performance gains maintaining alignment with formal verification. When combined with synthetic question generation, we establish a complete self-improvement loop where models generate practice problems, solve them, and evaluate their own performance-achieving an 8% improvement with Qwen 2.5 7B over baseline and surpassing GPT-4o performance on integration tasks. Our findings demonstrate that LLM judges can provide effective reward signals for training models, unlocking many reinforcement learning environments previously limited by the difficulty of creating programmatic rewards. This suggests a potential paradigm shift toward AI systems that continuously improve through self-directed learning rather than human-guided training, potentially accelerating progress in domains with scarce training data or complex evaluation requirements.
Large Language Models have Intrinsic Self-Correction Ability
Large language models (LLMs) have attracted significant attention for their remarkable abilities in various natural language processing tasks, but they suffer from hallucinations that will cause performance degradation. One promising solution to improve the LLMs' performance is to ask LLMs to revise their answer after generation, a technique known as self-correction. Among the two types of self-correction, intrinsic self-correction is considered a promising direction because it does not utilize external knowledge. However, recent works doubt the validity of LLM's ability to conduct intrinsic self-correction. In this paper, we present a novel perspective on the intrinsic self-correction capabilities of LLMs through theoretical analyses and empirical experiments. In addition, we identify two critical factors for successful self-correction: zero temperature and fair prompts. Leveraging these factors, we demonstrate that intrinsic self-correction ability is exhibited across multiple existing LLMs. Our findings offer insights into the fundamental theories underlying the self-correction behavior of LLMs and remark on the importance of unbiased prompts and zero temperature settings in harnessing their full potential.
Learning to Refine with Fine-Grained Natural Language Feedback
Recent work has explored the capability of large language models (LLMs) to identify and correct errors in LLM-generated responses. These refinement approaches frequently evaluate what sizes of models are able to do refinement for what problems, but less attention is paid to what effective feedback for refinement looks like. In this work, we propose looking at refinement with feedback as a composition of three distinct LLM competencies: (1) identification of bad generations; (2) fine-grained natural language feedback generation; (3) refining with fine-grained feedback. The first step can be implemented with a high-performing discriminative model and steps 2 and 3 can be implemented either via prompted or fine-tuned LLMs. A key property of this approach is that the step 2 critique model can give fine-grained feedback about errors, made possible by offloading the discrimination to a separate model in step 1. We show that models of different capabilities benefit from refining with this approach on the task of improving factual consistency of document grounded summaries. Overall, our proposed method consistently outperforms existing end-to-end refinement approaches and current trained models not fine-tuned for factuality critiquing.
Self-Refine: Iterative Refinement with Self-Feedback
Like humans, large language models (LLMs) do not always generate the best output on their first try. Motivated by how humans refine their written text, we introduce Self-Refine, an approach for improving initial outputs from LLMs through iterative feedback and refinement. The main idea is to generate an initial output using an LLMs; then, the same LLMs provides feedback for its output and uses it to refine itself, iteratively. Self-Refine does not require any supervised training data, additional training, or reinforcement learning, and instead uses a single LLM as the generator, refiner, and feedback provider. We evaluate Self-Refine across 7 diverse tasks, ranging from dialog response generation to mathematical reasoning, using state-of-the-art (GPT-3.5, ChatGPT, and GPT-4) LLMs. Across all evaluated tasks, outputs generated with Self-Refine are preferred by humans and automatic metrics over those generated with the same LLM using conventional one-step generation, improving by ~20% absolute on average in task performance. Our work demonstrates that even state-of-the-art LLMs like GPT-4 can be further improved at test time using our simple, standalone approach.
CodeCriticBench: A Holistic Code Critique Benchmark for Large Language Models
The critique capacity of Large Language Models (LLMs) is essential for reasoning abilities, which can provide necessary suggestions (e.g., detailed analysis and constructive feedback). Therefore, how to evaluate the critique capacity of LLMs has drawn great attention and several critique benchmarks have been proposed. However, existing critique benchmarks usually have the following limitations: (1). Focusing on diverse reasoning tasks in general domains and insufficient evaluation on code tasks (e.g., only covering code generation task), where the difficulty of queries is relatively easy (e.g., the code queries of CriticBench are from Humaneval and MBPP). (2). Lacking comprehensive evaluation from different dimensions. To address these limitations, we introduce a holistic code critique benchmark for LLMs called CodeCriticBench. Specifically, our CodeCriticBench includes two mainstream code tasks (i.e., code generation and code QA) with different difficulties. Besides, the evaluation protocols include basic critique evaluation and advanced critique evaluation for different characteristics, where fine-grained evaluation checklists are well-designed for advanced settings. Finally, we conduct extensive experimental results of existing LLMs, which show the effectiveness of CodeCriticBench.
Walking in Others' Shoes: How Perspective-Taking Guides Large Language Models in Reducing Toxicity and Bias
The common toxicity and societal bias in contents generated by large language models (LLMs) necessitate strategies to reduce harm. Present solutions often demand white-box access to the model or substantial training, which is impractical for cutting-edge commercial LLMs. Moreover, prevailing prompting methods depend on external tool feedback and fail to simultaneously lessen toxicity and bias. Motivated by social psychology principles, we propose a novel strategy named perspective-taking prompting (\textsc{PeT)} that inspires LLMs to integrate diverse human perspectives and self-regulate their responses. This self-correction mechanism can significantly diminish toxicity (up to 89%) and bias (up to 73%) in LLMs' responses. Rigorous evaluations and ablation studies are conducted on two commercial LLMs (ChatGPT and GLM) and three open-source LLMs, revealing PeT's superiority in producing less harmful responses, outperforming five strong baselines.
Self-Improvement in Language Models: The Sharpening Mechanism
Recent work in language modeling has raised the possibility of self-improvement, where a language models evaluates and refines its own generations to achieve higher performance without external feedback. It is impossible for this self-improvement to create information that is not already in the model, so why should we expect that this will lead to improved capabilities? We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening. Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training in order to ``sharpen'' the model to one placing large mass on high-quality sequences, thereby amortizing the expensive inference-time computation of generating good sequences. We begin by introducing a new statistical framework for sharpening in which the learner aims to sharpen a pre-trained base policy via sample access, and establish fundamental limits. Then we analyze two natural families of self-improvement algorithms based on SFT and RLHF. We find that (i) the SFT-based approach is minimax optimal whenever the initial model has sufficient coverage, but (ii) the RLHF-based approach can improve over SFT-based self-improvement by leveraging online exploration, bypassing the need for coverage. Finally, we empirically validate the sharpening mechanism via inference-time and amortization experiments. We view these findings as a starting point toward a foundational understanding that can guide the design and evaluation of self-improvement algorithms.
S^3c-Math: Spontaneous Step-level Self-correction Makes Large Language Models Better Mathematical Reasoners
Self-correction is a novel method that can stimulate the potential reasoning abilities of large language models (LLMs). It involves detecting and correcting errors during the inference process when LLMs solve reasoning problems. However, recent works do not regard self-correction as a spontaneous and intrinsic capability of LLMs. Instead, such correction is achieved through post-hoc generation, external knowledge introduction, multi-model collaboration, and similar techniques. In this paper, we propose a series of mathematical LLMs called S^3c-Math, which are able to perform Spontaneous Step-level Self-correction for Mathematical reasoning. This capability helps LLMs to recognize whether their ongoing inference tends to contain errors and simultaneously correct these errors to produce a more reliable response. We proposed a method, which employs a step-level sampling approach to construct step-wise self-correction data for achieving such ability. Additionally, we implement a training strategy that uses above constructed data to equip LLMs with spontaneous step-level self-correction capacities. Our data and methods have been demonstrated to be effective across various foundation LLMs, consistently showing significant progress in evaluations on GSM8K, MATH, and other mathematical benchmarks. To the best of our knowledge, we are the first to introduce the spontaneous step-level self-correction ability of LLMs in mathematical reasoning.
Self Meta Pseudo Labels: Meta Pseudo Labels Without The Teacher
We present Self Meta Pseudo Labels, a novel semi-supervised learning method similar to Meta Pseudo Labels but without the teacher model. We introduce a novel way to use a single model for both generating pseudo labels and classification, allowing us to store only one model in memory instead of two. Our method attains similar performance to the Meta Pseudo Labels method while drastically reducing memory usage.
When to Trust Context: Self-Reflective Debates for Context Reliability
Large language models frequently encounter conflicts between their parametric knowledge and contextual input, often resulting in factual inconsistencies or hallucinations. We propose Self-Reflective Debate for Contextual Reliability (SR-DCR), a lightweight framework that integrates token-level self-confidence with an asymmetric multi-agent debate to adjudicate such conflicts. A critic, deprived of context, challenges a defender who argues from the given passage; a judge model evaluates the debate and determines the context's reliability. The final answer is selected by combining the verdict with model confidence. Experiments on the ClashEval benchmark demonstrate that SR-DCR consistently enhances robustness to misleading context while maintaining accuracy on trustworthy inputs, outperforming both classical debate and confidence-only baselines with minimal computational overhead. The code is available at https://github.com/smiles724/Self-Reflective-Debates.
Self-Demos: Eliciting Out-of-Demonstration Generalizability in Large Language Models
Large language models (LLMs) have shown promising abilities of in-context learning (ICL), adapting swiftly to new tasks with only few-shot demonstrations. However, current few-shot methods heavily depend on high-quality, query-specific demos, which are often lacking. When faced with out-of-demonstration (OOD) queries, methods that rely on hand-crafted demos or external retrievers might fail. To bridge the gap between limited demos and OOD queries, we propose Self-Demos, a novel prompting method that elicits the inherent generalizability in LLMs by query-aware demo generation. The generated demos strategically interpolate between existing demos and the given query, transforming the query from OOD to ID. To evaluate the effectiveness of our approach, we manually constructed OOD-Toolset, a dataset in the tool-using scenario with over 300 real-world APIs and 1000 instances, each consisting of three tool-use cases as demos and an OOD query. Thorough experiments on our dataset and two public math benchmarks have shown that our method can outperform state-of-the-art baselines in the OOD setting. Moreover, we conduct a range of analyses to validate Self-Demos's generalization and provide more insights.
ProgCo: Program Helps Self-Correction of Large Language Models
Self-Correction aims to enable large language models (LLMs) to self-verify and self-refine their initial responses without external feedback. However, LLMs often fail to effectively self-verify and generate correct feedback, further misleading refinement and leading to the failure of self-correction, especially in complex reasoning tasks. In this paper, we propose Program-driven Self-Correction (ProgCo). First, program-driven verification (ProgVe) achieves complex verification logic and extensive validation through self-generated, self-executing verification pseudo-programs. Then, program-driven refinement (ProgRe) receives feedback from ProgVe, conducts dual reflection and refinement on both responses and verification programs to mitigate misleading of incorrect feedback in complex reasoning tasks. Experiments on three instruction-following and mathematical benchmarks indicate that ProgCo achieves effective self-correction, and can be further enhance performance when combined with real program tools.
TOOLVERIFIER: Generalization to New Tools via Self-Verification
Teaching language models to use tools is an important milestone towards building general assistants, but remains an open problem. While there has been significant progress on learning to use specific tools via fine-tuning, language models still struggle with learning how to robustly use new tools from only a few demonstrations. In this work we introduce a self-verification method which distinguishes between close candidates by self-asking contrastive questions during (1) tool selection; and (2) parameter generation. We construct synthetic, high-quality, self-generated data for this goal using Llama-2 70B, which we intend to release publicly. Extensive experiments on 4 tasks from the ToolBench benchmark, consisting of 17 unseen tools, demonstrate an average improvement of 22% over few-shot baselines, even in scenarios where the distinctions between candidate tools are finely nuanced.
Self-AMPLIFY: Improving Small Language Models with Self Post Hoc Explanations
Incorporating natural language rationales in the prompt and In-Context Learning (ICL) has led to a significant improvement of Large Language Models (LLMs) performance. However, rationales currently require human-annotation or the use of auxiliary proxy models to target promising samples or generate high-quality rationales. In this work, we propose Self-AMPLIFY to generate automatically rationales from post hoc explanation methods applied to Small Language Models (SLMs) to improve their own performance. Self-AMPLIFY is a 3-step method that targets samples, generates rationales and builds a final prompt to leverage ICL. Self-AMPLIFY performance is evaluated on two SLMs and two datasets requiring reasoning abilities: these experiments show that Self-AMPLIFY achieves good results against competitors. Self-AMPLIFY is the first method to apply post hoc explanation methods to SLM to generate rationales to improve their own performance in a fully automated manner.
Critique Fine-Tuning: Learning to Critique is More Effective than Learning to Imitate
Supervised Fine-Tuning (SFT) is commonly used to train language models to imitate annotated responses for given instructions. In this paper, we challenge this paradigm and propose Critique Fine-Tuning (CFT), a strategy where models learn to critique noisy responses rather than simply imitate correct ones. Inspired by human learning processes that emphasize critical thinking, CFT encourages deeper analysis and nuanced understanding-traits often overlooked by standard SFT. To validate the effectiveness of CFT, we construct a 50K-sample dataset from WebInstruct, using GPT-4o as the teacher to generate critiques in the form of (input=[query; noisy response], output=critique). CFT on this dataset yields a consistent 4-10% improvement over SFT on six math benchmarks with different base models like Qwen2.5, Qwen2.5-Math and DeepSeek-Math. We further expand to MetaMath and NuminaMath datasets and observe similar gains over SFT. Notably, our Qwen2.5-Math-CFT model-trained on just 50K samples-matches or outperforms competitive models such as AceMath and Qwen2.5-Math-Instruct on most benchmarks, both of which use over 2M samples. Ablation studies show that CFT is robust to the source of noisy response and teacher critique model. Through these findings, we argue that critique-based training offers a more effective alternative to advance the reasoning of language models.
Self-contradictory Hallucinations of Large Language Models: Evaluation, Detection and Mitigation
Large language models (large LMs) are susceptible to producing text with hallucinated content. Self-contradiction, where the LM generates two contradictory sentences within the same context, is an important form of hallucination. In this work, we present a comprehensive analysis on self-contradiction for state-of-the-art, instruction-tuned LMs, including evaluation, detection, and mitigation. To effectively trigger self-contradictions, we design a framework that constrains LMs to generate appropriate sentence pairs. Our evaluation on these sentence pairs reveals that self-contradictions occur frequently across different LMs for both famous and lesser-known topics. Next, we prompt the LMs to detect self-contradictions. Our results indicate that ChatGPT and GPT-4 are able to accurately identify self-contradictions, while Vicuna-13B struggles to do so. For example, with our best prompting method, ChatGPT achieves 91.0% precision and 80.5% recall on the sentence pairs generated by itself. To automatically mitigate self-contradictions, we develop an iterative algorithm that prompts the LMs to remove the detected self-contradictions from the generated text. Our algorithm successfully revises the text such that self-contradictions are significantly reduced, while maintaining its fluency and informativeness. Importantly, our entire pipeline of triggering, detecting, and mitigating self-contradictions is applicable to black-box LMs and does not require any external grounded knowledge.
B-STaR: Monitoring and Balancing Exploration and Exploitation in Self-Taught Reasoners
In the absence of extensive human-annotated data for complex reasoning tasks, self-improvement -- where models are trained on their own outputs -- has emerged as a primary method for enhancing performance. However, the critical factors underlying the mechanism of these iterative self-improving methods remain poorly understood, such as under what conditions self-improvement is effective, and what are the bottlenecks in the current iterations. In this work, we identify and propose methods to monitor two pivotal factors in this iterative process: (1) the model's ability to generate sufficiently diverse responses (exploration); and (2) the effectiveness of external rewards in distinguishing high-quality candidates from lower-quality ones (exploitation). Using mathematical reasoning as a case study, we begin with a quantitative analysis to track the dynamics of exploration and exploitation, discovering that a model's exploratory capabilities rapidly deteriorate over iterations, and the effectiveness of exploiting external rewards diminishes as well. Motivated by these findings, we introduce B-STaR, a Self-Taught Reasoning framework that autonomously adjusts configurations across iterations to Balance exploration and exploitation, thereby optimizing the self-improving effectiveness based on the current policy model and available rewards. Our experiments on mathematical reasoning, coding, and commonsense reasoning demonstrate that B-STaR not only enhances the model's exploratory capabilities throughout training but also achieves a more effective balance between exploration and exploitation, leading to superior performance.
Automated Peer Reviewing in Paper SEA: Standardization, Evaluation, and Analysis
In recent years, the rapid increase in scientific papers has overwhelmed traditional review mechanisms, resulting in varying quality of publications. Although existing methods have explored the capabilities of Large Language Models (LLMs) for automated scientific reviewing, their generated contents are often generic or partial. To address the issues above, we introduce an automated paper reviewing framework SEA. It comprises of three modules: Standardization, Evaluation, and Analysis, which are represented by models SEA-S, SEA-E, and SEA-A, respectively. Initially, SEA-S distills data standardization capabilities of GPT-4 for integrating multiple reviews for a paper. Then, SEA-E utilizes standardized data for fine-tuning, enabling it to generate constructive reviews. Finally, SEA-A introduces a new evaluation metric called mismatch score to assess the consistency between paper contents and reviews. Moreover, we design a self-correction strategy to enhance the consistency. Extensive experimental results on datasets collected from eight venues show that SEA can generate valuable insights for authors to improve their papers.
Teaching Language Models to Critique via Reinforcement Learning
Teaching large language models (LLMs) to critique and refine their outputs is crucial for building systems that can iteratively improve, yet it is fundamentally limited by the ability to provide accurate judgments and actionable suggestions. In this work, we study LLM critics for code generation and propose CTRL, a framework for Critic Training via Reinforcement Learning, which trains a critic model to generate feedback that maximizes correction performance for a fixed generator model without human supervision. Our results demonstrate that critics trained with CTRL significantly enhance pass rates and mitigate compounding errors across both base and stronger generator models. Furthermore, we show that these critic models act as accurate generative reward models and enable test-time scaling through iterative critique-revision, achieving up to 106.1% relative improvements across challenging code generation benchmarks.
Visual Prompting with Iterative Refinement for Design Critique Generation
Feedback is crucial for every design process, such as user interface (UI) design, and automating design critiques can significantly improve the efficiency of the design workflow. Although existing multimodal large language models (LLMs) excel in many tasks, they often struggle with generating high-quality design critiques -- a complex task that requires producing detailed design comments that are visually grounded in a given design's image. Building on recent advancements in iterative refinement of text output and visual prompting methods, we propose an iterative visual prompting approach for UI critique that takes an input UI screenshot and design guidelines and generates a list of design comments, along with corresponding bounding boxes that map each comment to a specific region in the screenshot. The entire process is driven completely by LLMs, which iteratively refine both the text output and bounding boxes using few-shot samples tailored for each step. We evaluated our approach using Gemini-1.5-pro and GPT-4o, and found that human experts generally preferred the design critiques generated by our pipeline over those by the baseline, with the pipeline reducing the gap from human performance by 50% for one rating metric. To assess the generalizability of our approach to other multimodal tasks, we applied our pipeline to open-vocabulary object and attribute detection, and experiments showed that our method also outperformed the baseline.
PEER: A Collaborative Language Model
Textual content is often the output of a collaborative writing process: We start with an initial draft, ask for suggestions, and repeatedly make changes. Agnostic of this process, today's language models are trained to generate only the final result. As a consequence, they lack several abilities crucial for collaborative writing: They are unable to update existing texts, difficult to control and incapable of verbally planning or explaining their actions. To address these shortcomings, we introduce PEER, a collaborative language model that is trained to imitate the entire writing process itself: PEER can write drafts, add suggestions, propose edits and provide explanations for its actions. Crucially, we train multiple instances of PEER able to infill various parts of the writing process, enabling the use of self-training techniques for increasing the quality, amount and diversity of training data. This unlocks PEER's full potential by making it applicable in domains for which no edit histories are available and improving its ability to follow instructions, to write useful comments, and to explain its actions. We show that PEER achieves strong performance across various domains and editing tasks.
V-STaR: Training Verifiers for Self-Taught Reasoners
Common self-improvement approaches for large language models (LLMs), such as STaR (Zelikman et al., 2022), iteratively fine-tune LLMs on self-generated solutions to improve their problem-solving ability. However, these approaches discard the large amounts of incorrect solutions generated during this process, potentially neglecting valuable information in such solutions. To address this shortcoming, we propose V-STaR that utilizes both the correct and incorrect solutions generated during the self-improvement process to train a verifier using DPO that judges correctness of model-generated solutions. This verifier is used at inference time to select one solution among many candidate solutions. Running V-STaR for multiple iterations results in progressively better reasoners and verifiers, delivering a 4% to 17% test accuracy improvement over existing self-improvement and verification approaches on common code generation and math reasoning benchmarks with LLaMA2 models.
Prompt Chaining or Stepwise Prompt? Refinement in Text Summarization
Large language models (LLMs) have demonstrated the capacity to improve summary quality by mirroring a human-like iterative process of critique and refinement starting from the initial draft. Two strategies are designed to perform this iterative process: Prompt Chaining and Stepwise Prompt. Prompt chaining orchestrates the drafting, critiquing, and refining phases through a series of three discrete prompts, while Stepwise prompt integrates these phases within a single prompt. However, the relative effectiveness of the two methods has not been extensively studied. This paper is dedicated to examining and comparing these two methods in the context of text summarization to ascertain which method stands out as the most effective. Experimental results show that the prompt chaining method can produce a more favorable outcome. This might be because stepwise prompt might produce a simulated refinement process according to our various experiments. Since refinement is adaptable to diverse tasks, our conclusions have the potential to be extrapolated to other applications, thereby offering insights that may contribute to the broader development of LLMs.
S^2R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning
Recent studies have demonstrated the effectiveness of LLM test-time scaling. However, existing approaches to incentivize LLMs' deep thinking abilities generally require large-scale data or significant training efforts. Meanwhile, it remains unclear how to improve the thinking abilities of less powerful base models. In this work, we introduce S^2R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference. Specifically, we first initialize LLMs with iterative self-verification and self-correction behaviors through supervised fine-tuning on carefully curated data. The self-verification and self-correction skills are then further strengthened by both outcome-level and process-level reinforcement learning, with minimized resource requirements, enabling the model to adaptively refine its reasoning process during inference. Our results demonstrate that, with only 3.1k self-verifying and self-correcting behavior initialization samples, Qwen2.5-math-7B achieves an accuracy improvement from 51.0\% to 81.6\%, outperforming models trained on an equivalent amount of long-CoT distilled data. Extensive experiments and analysis based on three base models across both in-domain and out-of-domain benchmarks validate the effectiveness of S^2R. Our code and data are available at https://github.com/NineAbyss/S2R.
Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing
Despite the impressive capabilities of Large Language Models (LLMs) on various tasks, they still struggle with scenarios that involves complex reasoning and planning. Recent work proposed advanced prompting techniques and the necessity of fine-tuning with high-quality data to augment LLMs' reasoning abilities. However, these approaches are inherently constrained by data availability and quality. In light of this, self-correction and self-learning emerge as viable solutions, employing strategies that allow LLMs to refine their outputs and learn from self-assessed rewards. Yet, the efficacy of LLMs in self-refining its response, particularly in complex reasoning and planning task, remains dubious. In this paper, we introduce AlphaLLM for the self-improvements of LLMs, which integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop, thereby enhancing the capabilities of LLMs without additional annotations. Drawing inspiration from the success of AlphaGo, AlphaLLM addresses the unique challenges of combining MCTS with LLM for self-improvement, including data scarcity, the vastness search spaces of language tasks, and the subjective nature of feedback in language tasks. AlphaLLM is comprised of prompt synthesis component, an efficient MCTS approach tailored for language tasks, and a trio of critic models for precise feedback. Our experimental results in mathematical reasoning tasks demonstrate that AlphaLLM significantly enhances the performance of LLMs without additional annotations, showing the potential for self-improvement in LLMs.
Collapse of Self-trained Language Models
In various fields of knowledge creation, including science, new ideas often build on pre-existing information. In this work, we explore this concept within the context of language models. Specifically, we explore the potential of self-training models on their own outputs, akin to how humans learn and build on their previous thoughts and actions. While this approach is intuitively appealing, our research reveals its practical limitations. We find that extended self-training of the GPT-2 model leads to a significant degradation in performance, resulting in repetitive and collapsed token output.
A Survey on Contrastive Self-supervised Learning
Self-supervised learning has gained popularity because of its ability to avoid the cost of annotating large-scale datasets. It is capable of adopting self-defined pseudo labels as supervision and use the learned representations for several downstream tasks. Specifically, contrastive learning has recently become a dominant component in self-supervised learning methods for computer vision, natural language processing (NLP), and other domains. It aims at embedding augmented versions of the same sample close to each other while trying to push away embeddings from different samples. This paper provides an extensive review of self-supervised methods that follow the contrastive approach. The work explains commonly used pretext tasks in a contrastive learning setup, followed by different architectures that have been proposed so far. Next, we have a performance comparison of different methods for multiple downstream tasks such as image classification, object detection, and action recognition. Finally, we conclude with the limitations of the current methods and the need for further techniques and future directions to make substantial progress.
Self-rewarding correction for mathematical reasoning
We study self-rewarding reasoning large language models (LLMs), which can simultaneously generate step-by-step reasoning and evaluate the correctness of their outputs during the inference time-without external feedback. This integrated approach allows a single model to independently guide its reasoning process, offering computational advantages for model deployment. We particularly focus on the representative task of self-correction, where models autonomously detect errors in their responses, revise outputs, and decide when to terminate iterative refinement loops. To enable this, we propose a two-staged algorithmic framework for constructing self-rewarding reasoning models using only self-generated data. In the first stage, we employ sequential rejection sampling to synthesize long chain-of-thought trajectories that incorporate both self-rewarding and self-correction mechanisms. Fine-tuning models on these curated data allows them to learn the patterns of self-rewarding and self-correction. In the second stage, we further enhance the models' ability to assess response accuracy and refine outputs through reinforcement learning with rule-based signals. Experiments with Llama-3 and Qwen-2.5 demonstrate that our approach surpasses intrinsic self-correction capabilities and achieves performance comparable to systems that rely on external reward models.
Integrate the Essence and Eliminate the Dross: Fine-Grained Self-Consistency for Free-Form Language Generation
Self-consistency (SC), leveraging multiple samples from LLMs, shows significant gains on various reasoning tasks but struggles with free-form generation due to the difficulty of aggregating answers. Its variants, UCS and USC, rely on sample selection or voting mechanisms to improve output quality. These methods, however, face limitations due to their inability to fully utilize the nuanced consensus knowledge present within multiple candidate samples, often resulting in suboptimal outputs. We propose Fine-Grained Self-Consistency (FSC) to addresses these limitations by extracting and integrating segment-level commonalities from candidate samples, enhancing the performance of LLMs both in open-ended and reasoning tasks. Based on this, we present two additional strategies: candidate filtering, which enhances overall quality by identifying highly similar candidate sets, and merging, which reduces input token requirements by combining similar samples. The effectiveness of FSC is demonstrated through extensive experiments on various tasks, including summarization, code generation, and mathematical reasoning, using GPT-3.5-turbo and GPT-4. The results indicate significant improvements over baseline methods, showcasing the potential of FSC to optimize output quality by effectively synthesizing fine-grained consensus knowledge from multiple samples.
SelfCite: Self-Supervised Alignment for Context Attribution in Large Language Models
We introduce SelfCite, a novel self-supervised approach that aligns LLMs to generate high-quality, fine-grained, sentence-level citations for the statements in their generated responses. Instead of only relying on costly and labor-intensive annotations, SelfCite leverages a reward signal provided by the LLM itself through context ablation: If a citation is necessary, removing the cited text from the context should prevent the same response; if sufficient, retaining the cited text alone should preserve the same response. This reward can guide the inference-time best-of-N sampling strategy to improve citation quality significantly, as well as be used in preference optimization to directly fine-tune the models for generating better citations. The effectiveness of SelfCite is demonstrated by increasing citation F1 up to 5.3 points on the LongBench-Cite benchmark across five long-form question answering tasks.
LLMs cannot find reasoning errors, but can correct them!
While self-correction has shown promise in improving LLM outputs in terms of style and quality (e.g. Chen et al., 2023; Madaan et al., 2023), recent attempts to self-correct logical or reasoning errors often cause correct answers to become incorrect, resulting in worse performances overall (Huang et al., 2023). In this paper, we break down the self-correction process into two core components: mistake finding and output correction. For mistake finding, we release BIG-Bench Mistake, a dataset of logical mistakes in Chain-of-Thought reasoning traces. We provide benchmark numbers for several state-of-the-art LLMs, and demonstrate that LLMs generally struggle with finding logical mistakes. For output correction, we propose a backtracking method which provides large improvements when given information on mistake location. We construe backtracking as a lightweight alternative to reinforcement learning methods, and show that it remains effective with a reward model at 60-70% accuracy.
A Survey on LLM Inference-Time Self-Improvement
Techniques that enhance inference through increased computation at test-time have recently gained attention. In this survey, we investigate the current state of LLM Inference-Time Self-Improvement from three different perspectives: Independent Self-improvement, focusing on enhancements via decoding or sampling methods; Context-Aware Self-Improvement, leveraging additional context or datastore; and Model-Aided Self-Improvement, achieving improvement through model collaboration. We provide a comprehensive review of recent relevant studies, contribute an in-depth taxonomy, and discuss challenges and limitations, offering insights for future research.
DeepCritic: Deliberate Critique with Large Language Models
As Large Language Models (LLMs) are rapidly evolving, providing accurate feedback and scalable oversight on their outputs becomes an urgent and critical problem. Leveraging LLMs as critique models to achieve automated supervision is a promising solution. In this work, we focus on studying and enhancing the math critique ability of LLMs. Current LLM critics provide critiques that are too shallow and superficial on each step, leading to low judgment accuracy and struggling to offer sufficient feedback for the LLM generator to correct mistakes. To tackle this issue, we propose a novel and effective two-stage framework to develop LLM critics that are capable of deliberately critiquing on each reasoning step of math solutions. In the first stage, we utilize Qwen2.5-72B-Instruct to generate 4.5K long-form critiques as seed data for supervised fine-tuning. Each seed critique consists of deliberate step-wise critiques that includes multi-perspective verifications as well as in-depth critiques of initial critiques for each reasoning step. Then, we perform reinforcement learning on the fine-tuned model with either existing human-labeled data from PRM800K or our automatically annotated data obtained via Monte Carlo sampling-based correctness estimation, to further incentivize its critique ability. Our developed critique model built on Qwen2.5-7B-Instruct not only significantly outperforms existing LLM critics (including the same-sized DeepSeek-R1-distill models and GPT-4o) on various error identification benchmarks, but also more effectively helps the LLM generator refine erroneous steps through more detailed feedback.
The ART of LLM Refinement: Ask, Refine, and Trust
In recent years, Large Language Models (LLMs) have demonstrated remarkable generative abilities, but can they judge the quality of their own generations? A popular concept, referred to as self-refinement, postulates that LLMs can detect and correct the errors in their generations when asked to do so. However, recent empirical evidence points in the opposite direction, suggesting that LLMs often struggle to accurately identify errors when reasoning is involved. To address this, we propose a reasoning with refinement objective called ART: Ask, Refine, and Trust, which asks necessary questions to decide when an LLM should refine its output, and either affirm or withhold trust in its refinement by ranking the refinement and the initial prediction. On two multistep reasoning tasks of mathematical word problems (GSM8K) and question answering (StrategyQA), ART achieves a performance gain of +5 points over self-refinement baselines, while using a much smaller model as the decision maker. We also demonstrate the benefit of using smaller models to make refinement decisions as a cost-effective alternative to fine-tuning a larger model.
RL4F: Generating Natural Language Feedback with Reinforcement Learning for Repairing Model Outputs
Despite their unprecedented success, even the largest language models make mistakes. Similar to how humans learn and improve using feedback, previous work proposed providing language models with natural language feedback to guide them in repairing their outputs. Because human-generated critiques are expensive to obtain, researchers have devised learned critique generators in lieu of human critics while assuming one can train downstream models to utilize generated feedback. However, this approach does not apply to black-box or limited access models such as ChatGPT, as they cannot be fine-tuned. Moreover, in the era of large general-purpose language agents, fine-tuning is neither computationally nor spatially efficient as it results in multiple copies of the network. In this work, we introduce RL4F (Reinforcement Learning for Feedback), a multi-agent collaborative framework where the critique generator is trained to maximize end-task performance of GPT-3, a fixed model more than 200 times its size. RL4F produces critiques that help GPT-3 revise its outputs. We study three datasets for action planning, summarization and alphabetization and show improvements (~5% on average) in multiple text similarity metrics over strong baselines across all three tasks.
Importance Weighting Can Help Large Language Models Self-Improve
Large language models (LLMs) have shown remarkable capability in numerous tasks and applications. However, fine-tuning LLMs using high-quality datasets under external supervision remains prohibitively expensive. In response, LLM self-improvement approaches have been vibrantly developed recently. The typical paradigm of LLM self-improvement involves training LLM on self-generated data, part of which may be detrimental and should be filtered out due to the unstable data quality. While current works primarily employs filtering strategies based on answer correctness, in this paper, we demonstrate that filtering out correct but with high distribution shift extent (DSE) samples could also benefit the results of self-improvement. Given that the actual sample distribution is usually inaccessible, we propose a new metric called DS weight to approximate DSE, inspired by the Importance Weighting methods. Consequently, we integrate DS weight with self-consistency to comprehensively filter the self-generated samples and fine-tune the language model. Experiments show that with only a tiny valid set (up to 5\% size of the training set) to compute DS weight, our approach can notably promote the reasoning ability of current LLM self-improvement methods. The resulting performance is on par with methods that rely on external supervision from pre-trained reward models.
Feedback Friction: LLMs Struggle to Fully Incorporate External Feedback
Recent studies have shown LLMs possess some ability to improve their responses when given external feedback. However, it remains unclear how effectively and thoroughly these models can incorporate extrinsic feedback. In an ideal scenario, if LLMs receive near-perfect and complete feedback, we would expect them to fully integrate the feedback and change their incorrect answers to correct ones. In this paper, we systematically investigate LLMs' ability to incorporate feedback by designing a controlled experimental environment. For each problem, a solver model attempts a solution, then a feedback generator with access to near-complete ground-truth answers produces targeted feedback, after which the solver tries again. We evaluate this pipeline across a diverse range of tasks, including math reasoning, knowledge reasoning, scientific reasoning, and general multi-domain evaluations with state-of-the-art language models including Claude 3.7 (with and without extended thinking). Surprisingly, even under these near-ideal conditions, solver models consistently show resistance to feedback, a limitation that we term FEEDBACK FRICTION. To mitigate this limitation, we experiment with sampling-based strategies like progressive temperature increases and explicit rejection of previously attempted incorrect answers, which yield improvements but still fail to help models achieve target performance. We also perform a rigorous exploration of potential causes of FEEDBACK FRICTION, ruling out factors such as model overconfidence and data familiarity. We hope that highlighting this issue in LLMs and ruling out several apparent causes will help future research in self-improvement.
PRD: Peer Rank and Discussion Improve Large Language Model based Evaluations
Nowadays, the quality of responses generated by different modern large language models (LLMs) are hard to evaluate and compare automatically. Recent studies suggest and predominantly use LLMs as a reference-free metric for open-ended question answering. More specifically, they use the recognized "strongest" LLM as the evaluator, which conducts pairwise comparisons of candidate models' answers and provides a ranking score. However, this intuitive method has multiple problems, such as bringing in self-enhancement (favoring its own answers) and positional bias. We draw insights and lessons from the educational domain (Cho and MacArthur, 2011; Walsh, 2014) to improve LLM-based evaluations. Specifically, we propose the (1) peer rank (PR) algorithm that takes into account each peer LLM's pairwise preferences of all answer pairs, and outputs a final ranking of models; and (2) peer discussion (PD), where we prompt two LLMs to discuss and try to reach a mutual agreement on preferences of two answers. We conduct experiments on two benchmark datasets. We find that our approaches achieve higher accuracy and align better with human judgments, respectively. Interestingly, PR can induce a relatively accurate self-ranking of models under the anonymous setting, where each model's name is unrevealed. Our work provides space to explore evaluating models that are hard to compare for humans.
Improving Factuality and Reasoning in Language Models through Multiagent Debate
Large language models (LLMs) have demonstrated remarkable capabilities in language generation, understanding, and few-shot learning in recent years. An extensive body of work has explored how their performance may be further improved through the tools of prompting, ranging from verification, self-consistency, or intermediate scratchpads. In this paper, we present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer. Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks. We also demonstrate that our approach improves the factual validity of generated content, reducing fallacious answers and hallucinations that contemporary models are prone to. Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate. Overall, our findings suggest that such "society of minds" approach has the potential to significantly advance the capabilities of LLMs and pave the way for further breakthroughs in language generation and understanding.
Digital Socrates: Evaluating LLMs through explanation critiques
While LLMs can provide reasoned explanations along with their answers, the nature and quality of those explanations are still poorly understood. In response, our goal is to define a detailed way of characterizing the explanation capabilities of modern models and to create a nuanced, interpretable explanation evaluation tool that can generate such characterizations automatically, without relying on expensive API calls or human annotations. Our approach is to (a) define the new task of explanation critiquing - identifying and categorizing any main flaw in an explanation and providing suggestions to address the flaw, (b) create a sizeable, human-verified dataset for this task, and (c) train an open-source, automatic critiquing model (called Digital Socrates) using this data. Through quantitative and qualitative analysis, we demonstrate how Digital Socrates is useful for revealing insights about student models by examining their reasoning chains, and how it can provide high-quality, nuanced, automatic evaluation of those model explanations for the first time. Digital Socrates thus fills an important gap in evaluation tools for understanding and improving the explanation behavior of models.
Don't Just Say "I don't know"! Self-aligning Large Language Models for Responding to Unknown Questions with Explanations
Despite the remarkable abilities of Large Language Models (LLMs) to answer questions, they often display a considerable level of overconfidence even when the question does not have a definitive answer. To avoid providing hallucinated answers to these unknown questions, existing studies typically investigate approaches to refusing to answer these questions. In this work, we propose a novel and scalable self-alignment method to utilize the LLM itself to enhance its response-ability to different types of unknown questions, being capable of not only refusing to answer but also providing explanation to the unanswerability of unknown questions. Specifically, the Self-Align method first employ a two-stage class-aware self-augmentation approach to generate a large amount of unknown question-response data. Then we conduct disparity-driven self-curation to select qualified data for fine-tuning the LLM itself for aligning the responses to unknown questions as desired. Experimental results on two datasets across four types of unknown questions validate the superiority of the Self-Align method over existing baselines in terms of three types of task formulation.
Self-Correction is More than Refinement: A Learning Framework for Visual and Language Reasoning Tasks
While Vision-Language Models (VLMs) have shown remarkable abilities in visual and language reasoning tasks, they invariably generate flawed responses. Self-correction that instructs models to refine their outputs presents a promising solution to this issue. Previous studies have mainly concentrated on Large Language Models (LLMs), while the self-correction abilities of VLMs, particularly concerning both visual and linguistic information, remain largely unexamined. This study investigates the self-correction capabilities of VLMs during both inference and fine-tuning stages. We introduce a Self-Correction Learning (SCL) approach that enables VLMs to learn from their self-generated self-correction data through Direct Preference Optimization (DPO) without relying on external feedback, facilitating self-improvement. Specifically, we collect preferred and disfavored samples based on the correctness of initial and refined responses, which are obtained by two-turn self-correction with VLMs during the inference stage. Experimental results demonstrate that although VLMs struggle to self-correct effectively during iterative inference without additional fine-tuning and external feedback, they can enhance their performance and avoid previous mistakes through preference fine-tuning when their self-generated self-correction data are categorized into preferred and disfavored samples. This study emphasizes that self-correction is not merely a refinement process; rather, it should enhance the reasoning abilities of models through additional training, enabling them to generate high-quality responses directly without further refinement.
Can Large Reasoning Models Self-Train?
Scaling the performance of large language models (LLMs) increasingly depends on methods that reduce reliance on human supervision. Reinforcement learning from automated verification offers an alternative, but it incurs scalability limitations due to dependency upon human-designed verifiers. Self-training, where the model's own judgment provides the supervisory signal, presents a compelling direction. We propose an online self-training reinforcement learning algorithm that leverages the model's self-consistency to infer correctness signals and train without any ground-truth supervision. We apply the algorithm to challenging mathematical reasoning tasks and show that it quickly reaches performance levels rivaling reinforcement-learning methods trained explicitly on gold-standard answers. Additionally, we analyze inherent limitations of the algorithm, highlighting how the self-generated proxy reward initially correlated with correctness can incentivize reward hacking, where confidently incorrect outputs are favored. Our results illustrate how self-supervised improvement can achieve significant performance gains without external labels, while also revealing its fundamental challenges.
Demystifying GPT Self-Repair for Code Generation
Large Language Models (LLMs) have shown remarkable aptitude in code generation but still struggle on challenging programming tasks. Self-repair -- in which the model debugs and fixes mistakes in its own code -- has recently become a popular way to boost performance in these settings. However, only very limited studies on how and when self-repair works effectively exist in the literature, and one might wonder to what extent a model is really capable of providing accurate feedback on why the code is wrong when that code was generated by the same model. In this paper, we analyze GPT-3.5 and GPT-4's ability to perform self-repair on APPS, a challenging dataset consisting of diverse coding challenges. To do so, we first establish a new evaluation strategy dubbed pass@t that measures the pass rate of the tasks against the total number of tokens sampled from the model, enabling a fair comparison to purely sampling-based approaches. With this evaluation strategy, we find that the effectiveness of self-repair is only seen in GPT-4. We also observe that self-repair is bottlenecked by the feedback stage; using GPT-4 to give feedback on the programs generated by GPT-3.5 and using expert human programmers to give feedback on the programs generated by GPT-4, we unlock significant performance gains.
Training LLMs to Better Self-Debug and Explain Code
In the domain of code generation, self-debugging is crucial. It allows LLMs to refine their generated code based on execution feedback. This is particularly important because generating correct solutions in one attempt proves challenging for complex tasks. Prior works on self-debugging mostly focus on prompting methods by providing LLMs with few-shot examples, which work poorly on small open-sourced LLMs. In this work, we propose a training framework that significantly improves self-debugging capability of LLMs. Intuitively, we observe that a chain of explanations on the wrong code followed by code refinement helps LLMs better analyze the wrong code and do refinement. We thus propose an automated pipeline to collect a high-quality dataset for code explanation and refinement by generating a number of explanations and refinement trajectories and filtering via execution verification. We perform supervised fine-tuning (SFT) and further reinforcement learning (RL) on both success and failure trajectories with a novel reward design considering code explanation and refinement quality. SFT improves the pass@1 by up to 15.92% and pass@10 by 9.30% over four benchmarks. RL training brings additional up to 3.54% improvement on pass@1 and 2.55% improvement on pass@10. The trained LLMs show iterative refinement ability, and can keep refining code continuously. Lastly, our human evaluation shows that the LLMs trained with our framework generate more useful code explanations and help developers better understand bugs in source code.
Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate
Modern large language models (LLMs) like ChatGPT have shown remarkable performance on general language tasks but still struggle on complex reasoning tasks, which drives the research on cognitive behaviors of LLMs to explore human-like problem-solving strategies. Along this direction, one representative strategy is self-reflection, which asks an LLM to refine the solution with the feedback generated by itself iteratively. However, our study shows that such reflection-style methods suffer from the Degeneration-of-Thought (DoT) problem: once the LLM has established confidence in its solutions, it is unable to generate novel thoughts later through reflection even if its initial stance is incorrect. To address the DoT problem, we propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution. Clearly, our MAD framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation. Experiment results on two challenging datasets, commonsense machine translation and counter-intuitive arithmetic reasoning, demonstrate the effectiveness of our MAD framework. Extensive analyses suggest that the adaptive break of debate and the modest level of "tit for tat" state are required for MAD to obtain good performance. Moreover, we find that LLMs might not be a fair judge if different LLMs are used for agents. Codes: https://github.com/Skytliang/Multi-Agents-Debate
Self-Judge: Selective Instruction Following with Alignment Self-Evaluation
Pre-trained large language models (LLMs) can be tailored to adhere to human instructions through instruction tuning. However, due to shifts in the distribution of test-time data, they may not always execute instructions accurately, potentially generating factual errors or misaligned content when acting as chat assistants. To enhance the reliability of LLMs in following instructions, we propose the study of selective instruction following, whereby the system declines to execute instructions if the anticipated response quality is low. We train judge models that can predict numerical quality scores for model responses. To address data scarcity, we introduce Self-J, a novel self-training framework for developing judge models without needing human-annotated quality scores. Our method leverages the model's inherent self-evaluation capability to extract information about response quality from labeled instruction-tuning data. It incorporates a gold reference answer to facilitate self-evaluation and recalibrates by assessing the semantic similarity between the response sample and the gold reference. During the training phase, we implement self-distillation as a regularization technique to enhance the capability of reference-free estimation. To validate alignment evaluation on general instruction-following tasks, we collect large-scale high-quality instructions from Hugging Face for model training and evaluation. Extensive experiments on five open-source models show that our method correlates much more with GPT-4 than strong baselines, e.g., supervised models distilled from GPT-4 and GPT-3.5-turbo. Our analysis shows our model's strong generalization across domains. Additionally, our judge models serve as good reward models, e.g., boosting WizardLM-13B-V1.2 from 89.17 to 92.48 and from 12.03 to 15.90 in version v1 and v2 of AlpacaEval respectively using best-of-32 sampling with our judge models.
LLMs Can Generate a Better Answer by Aggregating Their Own Responses
Large Language Models (LLMs) have shown remarkable capabilities across tasks, yet they often require additional prompting techniques when facing complex problems. While approaches like self-correction and response selection have emerged as popular solutions, recent studies have shown these methods perform poorly when relying on the LLM itself to provide feedback or selection criteria. We argue this limitation stems from the fact that common LLM post-training procedures lack explicit supervision for discriminative judgment tasks. In this paper, we propose Generative Self-Aggregation (GSA), a novel prompting method that improves answer quality without requiring the model's discriminative capabilities. GSA first samples multiple diverse responses from the LLM, then aggregates them to obtain an improved solution. Unlike previous approaches, our method does not require the LLM to correct errors or compare response quality; instead, it leverages the model's generative abilities to synthesize a new response based on the context of multiple samples. While GSA shares similarities with the self-consistency (SC) approach for response aggregation, SC requires specific verifiable tokens to enable majority voting. In contrast, our approach is more general and can be applied to open-ended tasks. Empirical evaluation demonstrates that GSA effectively improves response quality across various tasks, including mathematical reasoning, knowledge-based problems, and open-ended generation tasks such as code synthesis and conversational responses.
Process-based Self-Rewarding Language Models
Large Language Models have demonstrated outstanding performance across various downstream tasks and have been widely applied in multiple scenarios. Human-annotated preference data is used for training to further improve LLMs' performance, which is constrained by the upper limit of human performance. Therefore, Self-Rewarding method has been proposed, where LLMs generate training data by rewarding their own outputs. However, the existing self-rewarding paradigm is not effective in mathematical reasoning scenarios and may even lead to a decline in performance. In this work, we propose the Process-based Self-Rewarding pipeline for language models, which introduces long-thought reasoning, step-wise LLM-as-a-Judge, and step-wise preference optimization within the self-rewarding paradigm. Our new paradigm successfully enhances the performance of LLMs on multiple mathematical reasoning benchmarks through iterative Process-based Self-Rewarding, demonstrating the immense potential of self-rewarding to achieve LLM reasoning that may surpass human capabilities.
QueryAgent: A Reliable and Efficient Reasoning Framework with Environmental Feedback-based Self-Correction
Employing Large Language Models (LLMs) for semantic parsing has achieved remarkable success. However, we find existing methods fall short in terms of reliability and efficiency when hallucinations are encountered. In this paper, we address these challenges with a framework called QueryAgent, which solves a question step-by-step and performs step-wise self-correction. We introduce an environmental feedback-based self-correction method called ERASER. Unlike traditional approaches, ERASER leverages rich environmental feedback in the intermediate steps to perform selective and differentiated self-correction only when necessary. Experimental results demonstrate that QueryAgent notably outperforms all previous few-shot methods using only one example on GrailQA and GraphQ by 7.0 and 15.0 F1. Moreover, our approach exhibits superiority in terms of efficiency, including runtime, query overhead, and API invocation costs. By leveraging ERASER, we further improve another baseline (i.e., AgentBench) by approximately 10 points, revealing the strong transferability of our approach.
Self-Correction Bench: Revealing and Addressing the Self-Correction Blind Spot in LLMs
Although large language models (LLMs) have become transformative, they still make mistakes and can explore unproductive reasoning paths. Self-correction is an important capability for a trustworthy LLM, particularly an autoregressive LLM. While LLMs can identify error in user input, they exhibit a systematic 'Self-Correction Blind Spot' - failing to correct identical error in their own outputs. To systematically study this phenomenon, we introduce Self-Correction Bench, a systematic framework to measure this phenomenon through controlled error injection at three complexity levels. Testing 14 models, we find an average 64.5% blind spot rate. We find multiple evidences that this limitation relates to training data composition: human training demonstrations predominantly show error-free responses rather than error-correction sequences, unlike RL-trained models that learn error correction through outcome feedback. Remarkably, simply appending "Wait" reduces blind spots by 89.3%, suggesting that the capability exists but requires activation. Our work highlights a critical limitation in current LLMs and offers potential avenues for improving their reliability and trustworthiness.
Some things are more CRINGE than others: Preference Optimization with the Pairwise Cringe Loss
Practitioners commonly align large language models using pairwise preferences, i.e., given labels of the type response A is preferred to response B for a given input. Perhaps less commonly, methods have also been developed for binary feedback, i.e. training models given labels of type response A is good or bad. We show how an existing performant binary feedback method, the Cringe Loss (Adolphs et al., 2022), can be generalized to the pairwise preference setting using a simple soft margin extension. Pairwise Cringe Loss is straightforward to implement and efficient to train, and we find it outperforms state-of-the-art preference optimization algorithms such as PPO and DPO on the AlpacaFarm benchmark.
HumanEval Pro and MBPP Pro: Evaluating Large Language Models on Self-invoking Code Generation
We introduce self-invoking code generation, a new task designed to evaluate the progressive reasoning and problem-solving capabilities of LLMs. In this task, models are presented with a base problem and a related, more complex problem. They must solve the base problem and then utilize its solution to address the more complex one. This work features three key contributions. First, we propose a general recipe for generating more challenging versions of existing benchmarks, resulting in three new benchmarks: HumanEval Pro, MBPP Pro, and BigCodeBench-Lite Pro, specifically designed to assess LLMs on self-invoking code generation. Second, from the analysis of experimental results over twenty LLMs on our benchmarks, we have two important observations: (i) Most LLMs excel in traditional code generation benchmarks like HumanEval and MBPP, but their performance declines on self-invoking tasks. For example, o1-mini achieves 96.2% pass@1 on HumanEval but only 76.2% on HumanEval Pro. (ii) On self-invoking code generation task, the instruction-tuned models demonstrate only marginal improvements compared to the base models. Third, we disclose the types of failure modes that exist in our evaluation results. All these results underscore the need for further advancements in self-invoking code generation tasks and provide a new direction for future research on enhancing LLMs' code reasoning capabilities.
Constructive Large Language Models Alignment with Diverse Feedback
In recent research on large language models (LLMs), there has been a growing emphasis on aligning these models with human values to reduce the impact of harmful content. However, current alignment methods often rely solely on singular forms of human feedback, such as preferences, annotated labels, or natural language critiques, overlooking the potential advantages of combining these feedback types. This limitation leads to suboptimal performance, even when ample training data is available. In this paper, we introduce Constructive and Diverse Feedback (CDF) as a novel method to enhance LLM alignment, inspired by constructivist learning theory. Our approach involves collecting three distinct types of feedback tailored to problems of varying difficulty levels within the training dataset. Specifically, we exploit critique feedback for easy problems, refinement feedback for medium problems, and preference feedback for hard problems. By training our model with this diversified feedback, we achieve enhanced alignment performance while using less training data. To assess the effectiveness of CDF, we evaluate it against previous methods in three downstream tasks: question answering, dialog generation, and text summarization. Experimental results demonstrate that CDF achieves superior performance even with a smaller training dataset.
Self-Taught Self-Correction for Small Language Models
Although large language models (LLMs) have achieved remarkable performance across various tasks, they remain prone to errors. A key challenge is enabling them to self-correct. While prior research has relied on external tools or large proprietary models, this work explores self-correction in small language models (SLMs) through iterative fine-tuning using solely self-generated data. We introduce the Self-Taught Self-Correction (STaSC) algorithm, which incorporates multiple algorithmic design choices. Experimental results on a question-answering task demonstrate that STaSC effectively learns self-correction, leading to significant performance improvements. Our analysis further provides insights into the mechanisms of self-correction and the impact of different design choices on learning dynamics and overall performance. To support future research, we release our user-friendly codebase and lightweight models.
Spontaneous Reward Hacking in Iterative Self-Refinement
Language models are capable of iteratively improving their outputs based on natural language feedback, thus enabling in-context optimization of user preference. In place of human users, a second language model can be used as an evaluator, providing feedback along with numerical ratings which the generator attempts to optimize. However, because the evaluator is an imperfect proxy of user preference, this optimization can lead to reward hacking, where the evaluator's ratings improve while the generation quality remains stagnant or even decreases as judged by actual user preference. The concern of reward hacking is heightened in iterative self-refinement where the generator and the evaluator use the same underlying language model, in which case the optimization pressure can drive them to exploit shared vulnerabilities. Using an essay editing task, we show that iterative self-refinement leads to deviation between the language model evaluator and human judgment, demonstrating that reward hacking can occur spontaneously in-context with the use of iterative self-refinement. In addition, we study conditions under which reward hacking occurs and observe two factors that affect reward hacking severity: model size and context sharing between the generator and the evaluator.
CSC-SQL: Corrective Self-Consistency in Text-to-SQL via Reinforcement Learning
Large language models (LLMs) have demonstrated strong capabilities in translating natural language questions about relational databases into SQL queries. In particular, test-time scaling techniques such as Self-Consistency and Self-Correction can enhance SQL generation accuracy by increasing computational effort during inference. However, these methods have notable limitations: Self-Consistency may select suboptimal outputs despite majority votes, while Self-Correction typically addresses only syntactic errors. To leverage the strengths of both approaches, we propose CSC-SQL, a novel method that integrates Self-Consistency and Self-Correction. CSC-SQL selects the two most frequently occurring outputs from parallel sampling and feeds them into a merge revision model for correction. Additionally, we employ the Group Relative Policy Optimization (GRPO) algorithm to fine-tune both the SQL generation and revision models via reinforcement learning, significantly enhancing output quality. Experimental results confirm the effectiveness and generalizability of CSC-SQL. On the BIRD development set, our 3B model achieves 65.28% execution accuracy, while the 7B model achieves 69.19%. The code will be open sourced at https://github.com/CycloneBoy/csc_sql.
A Cookbook of Self-Supervised Learning
Self-supervised learning, dubbed the dark matter of intelligence, is a promising path to advance machine learning. Yet, much like cooking, training SSL methods is a delicate art with a high barrier to entry. While many components are familiar, successfully training a SSL method involves a dizzying set of choices from the pretext tasks to training hyper-parameters. Our goal is to lower the barrier to entry into SSL research by laying the foundations and latest SSL recipes in the style of a cookbook. We hope to empower the curious researcher to navigate the terrain of methods, understand the role of the various knobs, and gain the know-how required to explore how delicious SSL can be.
ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification
Self-awareness, i.e., the ability to assess and correct one's own generation, is a fundamental aspect of human intelligence, making its replication in large language models (LLMs) an important yet challenging task. Previous works tackle this by employing extensive reinforcement learning or rather relying on large external verifiers. In this work, we propose Refine via Intrinsic Self-Verification (ReVISE), an efficient and effective framework that enables LLMs to self-correct their outputs through self-verification. The core idea of ReVISE is to enable LLMs to verify their reasoning processes and continually rethink reasoning trajectories based on its verification. We introduce a structured curriculum based upon online preference learning to implement this efficiently. Specifically, as ReVISE involves two challenging tasks (i.e., self-verification and reasoning correction), we tackle each task sequentially using curriculum learning, collecting both failed and successful reasoning paths to construct preference pairs for efficient training. During inference, our approach enjoys natural test-time scaling by integrating self-verification and correction capabilities, further enhanced by our proposed confidence-aware decoding mechanism. Our experiments on various reasoning tasks demonstrate that ReVISE achieves efficient self-correction and significantly improves reasoning performance.
On-Policy Self-Alignment with Fine-grained Knowledge Feedback for Hallucination Mitigation
Hallucination occurs when large language models exhibit behavior that deviates from the boundaries of their knowledge during response generation. To address this critical issue, previous learning-based methods attempt to finetune models but are limited by off-policy sampling and coarse-grained feedback. In this paper, we present \b{Reinforcement Learning for Hallucination} (RLFH), an on-policy self-alignment approach that enables LLMs to actively explore their knowledge boundaries and self-correct generation behavior through fine-grained feedback signals. RLFH introduces a self-assessment framework where the policy serves as its own judge. Through this framework, responses are automatically decomposed into atomic facts and their truthfulness and informativeness are assessed against external knowledge sources. The resulting fine-grained feedback at the statement level are then converted into token-level dense reward signals. This enables online reinforcement learning to achieve precise and timely optimization without human intervention. Comprehensive evaluations on HotpotQA, SQuADv2, and Biography benchmarks validate RLFH's effectiveness in hallucination mitigation.
Relevant or Random: Can LLMs Truly Perform Analogical Reasoning?
Analogical reasoning is a unique ability of humans to address unfamiliar challenges by transferring strategies from relevant past experiences. One key finding in psychology is that compared with irrelevant past experiences, recalling relevant ones can help humans better handle new tasks. Coincidentally, the NLP community has also recently found that self-generating relevant examples in the context can help large language models (LLMs) better solve a given problem than hand-crafted prompts. However, it is yet not clear whether relevance is the key factor eliciting such capability, i.e., can LLMs benefit more from self-generated relevant examples than irrelevant ones? In this work, we systematically explore whether LLMs can truly perform analogical reasoning on a diverse set of reasoning tasks. With extensive experiments and analysis, we show that self-generated random examples can surprisingly achieve comparable or even better performance, e.g., 4% performance boost on GSM8K with random biological examples. We find that the accuracy of self-generated examples is the key factor and subsequently design two improved methods with significantly reduced inference costs. Overall, we aim to advance a deeper understanding of LLM analogical reasoning and hope this work stimulates further research in the design of self-generated contexts.
Line of Duty: Evaluating LLM Self-Knowledge via Consistency in Feasibility Boundaries
As LLMs grow more powerful, their most profound achievement may be recognising when to say "I don't know". Existing studies on LLM self-knowledge have been largely constrained by human-defined notions of feasibility, often neglecting the reasons behind unanswerability by LLMs and failing to study deficient types of self-knowledge. This study aims to obtain intrinsic insights into different types of LLM self-knowledge with a novel methodology: allowing them the flexibility to set their own feasibility boundaries and then analysing the consistency of these limits. We find that even frontier models like GPT-4o and Mistral Large are not sure of their own capabilities more than 80% of the time, highlighting a significant lack of trustworthiness in responses. Our analysis of confidence balance in LLMs indicates that models swing between overconfidence and conservatism in feasibility boundaries depending on task categories and that the most significant self-knowledge weaknesses lie in temporal awareness and contextual understanding. These difficulties in contextual comprehension additionally lead models to question their operational boundaries, resulting in considerable confusion within the self-knowledge of LLMs. We make our code and results available publicly at https://github.com/knowledge-verse-ai/LLM-Self_Knowledge_Eval
Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models
Fine-tuning language models~(LMs) on human-generated data remains a prevalent practice. However, the performance of such models is often limited by the quantity and diversity of high-quality human data. In this paper, we explore whether we can go beyond human data on tasks where we have access to scalar feedback, for example, on math problems where one can verify correctness. To do so, we investigate a simple self-training method based on expectation-maximization, which we call ReST^{EM}, where we (1) generate samples from the model and filter them using binary feedback, (2) fine-tune the model on these samples, and (3) repeat this process a few times. Testing on advanced MATH reasoning and APPS coding benchmarks using PaLM-2 models, we find that ReST^{EM} scales favorably with model size and significantly surpasses fine-tuning only on human data. Overall, our findings suggest self-training with feedback can substantially reduce dependence on human-generated data.
EchoPrompt: Instructing the Model to Rephrase Queries for Improved In-context Learning
Large language models primarily rely on incontext learning to execute tasks. We introduce EchoPrompt, a simple yet effective approach to prompt the model to rephrase its queries before answering them. EchoPrompt is inspired by self-questioning, a cognitive strategy humans use to vocalize queries before providing answers, thereby reducing misconceptions. Experimental results demonstrate that EchoPrompt leads to substantial improvements in both zero-shot and few-shot in-context learning with standard and chain-of-thought prompting on four families of causal language models. These improvements are observed across various numerical reasoning (GSM8K, SVAMP, MultiArith, SingleOp), reading comprehension (DROP, SQuAD), and logical reasoning (Shuffled Objects, Date Understanding, Coin Flipping) tasks. On average, EchoPrompt improves the Zero-shot-CoT performance of code-davinci-002 by 5% in numerical tasks and 13% in reading comprehension tasks. We investigate the effectiveness of EchoPrompt through ablation studies, which reveal the significance of both original and rephrased queries for EchoPrompt's efficacy. Our empirical results show that EchoPrompt is an effective technique that can easily augment in-context learning for better performance.
Sample, Scrutinize and Scale: Effective Inference-Time Search by Scaling Verification
Sampling-based search, a simple paradigm for utilizing test-time compute, involves generating multiple candidate responses and selecting the best one -- typically by verifying each response for correctness. In this paper, we study the scaling trends governing sampling-based search. Among our findings is that simply scaling up a minimalist implementation that uses only random sampling and direct self-verification results in sustained performance improvements that, for example, elevate the Gemini v1.5 Pro model's reasoning capabilities past that of o1-Preview on popular benchmarks. We partially attribute the scalability of sampling-based search to a phenomenon of implicit scaling, where sampling a larger pool of responses in turn improves verification accuracy. We further identify two useful principles for improving self-verification capabilities with test-time compute: (1) comparing across responses provides helpful signals about the locations of errors and hallucinations, and (2) different model output styles are useful for different contexts -- chains of thought are useful for reasoning but harder to verify. We also find that, though accurate verification can be elicited, frontier models demonstrate remarkably weak out-of-box verification capabilities and introduce a benchmark to measure progress on these deficiencies.
Erasing with Precision: Evaluating Specific Concept Erasure from Text-to-Image Generative Models
Studies have been conducted to prevent specific concepts from being generated from pretrained text-to-image generative models, achieving concept erasure in various ways. However, the performance evaluation of these studies is still largely reliant on visualization, with the superiority of studies often determined by human subjectivity. The metrics of quantitative evaluation also vary, making comprehensive comparisons difficult. We propose EraseEval, an evaluation method that differs from previous evaluation methods in that it involves three fundamental evaluation criteria: (1) How well does the prompt containing the target concept be reflected, (2) To what extent the concepts related to the erased concept can reduce the impact of the erased concept, and (3) Whether other concepts are preserved. These criteria are evaluated and integrated into a single metric, such that a lower score is given if any of the evaluations are low, leading to a more robust assessment. We experimentally evaluated baseline concept erasure methods, organized their characteristics, and identified challenges with them. Despite being fundamental evaluation criteria, some concept erasure methods failed to achieve high scores, which point toward future research directions for concept erasure methods. Our code is available at https://github.com/fmp453/erase-eval.
Citekit: A Modular Toolkit for Large Language Model Citation Generation
Enabling Large Language Models (LLMs) to generate citations in Question-Answering (QA) tasks is an emerging paradigm aimed at enhancing the verifiability of their responses when LLMs are utilizing external references to generate an answer. However, there is currently no unified framework to standardize and fairly compare different citation generation methods, leading to difficulties in reproducing different methods and a comprehensive assessment. To cope with the problems above, we introduce \name, an open-source and modular toolkit designed to facilitate the implementation and evaluation of existing citation generation methods, while also fostering the development of new approaches to improve citation quality in LLM outputs. This tool is highly extensible, allowing users to utilize 4 main modules and 14 components to construct a pipeline, evaluating an existing method or innovative designs. Our experiments with two state-of-the-art LLMs and 11 citation generation baselines demonstrate varying strengths of different modules in answer accuracy and citation quality improvement, as well as the challenge of enhancing granularity. Based on our analysis of the effectiveness of components, we propose a new method, self-RAG \snippet, obtaining a balanced answer accuracy and citation quality. Citekit is released at https://github.com/SjJ1017/Citekit.
Continued Pretraining for Better Zero- and Few-Shot Promptability
Recently introduced language model prompting methods can achieve high accuracy in zero- and few-shot settings while requiring few to no learned task-specific parameters. Nevertheless, these methods still often trail behind full model finetuning. In this work, we investigate if a dedicated continued pretraining stage could improve "promptability", i.e., zero-shot performance with natural language prompts or few-shot performance with prompt tuning. We reveal settings where existing continued pretraining methods lack promptability. We also identify current methodological gaps, which we fill with thorough large-scale experiments. We demonstrate that a simple recipe, continued pretraining that incorporates a trainable prompt during multi-task learning, leads to improved promptability in both zero- and few-shot settings compared to existing methods, up to 31% relative. On the other hand, we find that continued pretraining using MAML-style meta-learning, a method that directly optimizes few-shot promptability, yields subpar performance. We validate our findings with two prompt tuning methods, and, based on our results, we provide concrete recommendations to optimize promptability for different use cases.
Can Language Models Falsify? Evaluating Algorithmic Reasoning with Counterexample Creation
There is growing excitement about the potential of Language Models (LMs) to accelerate scientific discovery. Falsifying hypotheses is key to scientific progress, as it allows claims to be iteratively refined over time. This process requires significant researcher effort, reasoning, and ingenuity. Yet current benchmarks for LMs predominantly assess their ability to generate solutions rather than challenge them. We advocate for developing benchmarks that evaluate this inverse capability - creating counterexamples for subtly incorrect solutions. To demonstrate this approach, we start with the domain of algorithmic problem solving, where counterexamples can be evaluated automatically using code execution. Specifically, we introduce REFUTE, a dynamically updating benchmark that includes recent problems and incorrect submissions from programming competitions, where human experts successfully identified counterexamples. Our analysis finds that the best reasoning agents, even OpenAI o3-mini (high) with code execution feedback, can create counterexamples for only <9% of incorrect solutions in REFUTE, even though ratings indicate its ability to solve up to 48% of these problems from scratch. We hope our work spurs progress in evaluating and enhancing LMs' ability to falsify incorrect solutions - a capability that is crucial for both accelerating research and making models self-improve through reliable reflective reasoning.
Improving In-Context Few-Shot Learning via Self-Supervised Training
Self-supervised pretraining has made few-shot learning possible for many NLP tasks. But the pretraining objectives are not typically adapted specifically for in-context few-shot learning. In this paper, we propose to use self-supervision in an intermediate training stage between pretraining and downstream few-shot usage with the goal to teach the model to perform in-context few shot learning. We propose and evaluate four self-supervised objectives on two benchmarks. We find that the intermediate self-supervision stage produces models that outperform strong baselines. Ablation study shows that several factors affect the downstream performance, such as the amount of training data and the diversity of the self-supervised objectives. Human-annotated cross-task supervision and self-supervision are complementary. Qualitative analysis suggests that the self-supervised-trained models are better at following task requirements.
LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning
This paper presents an advanced mathematical problem-solving framework, LLaMA-Berry, for enhancing the mathematical reasoning ability of Large Language Models (LLMs). The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path and utilizes a pairwise reward model to evaluate different paths globally. By leveraging the self-critic and rewriting capabilities of LLMs, Self-Refine applied to MCTS (SR-MCTS) overcomes the inefficiencies and limitations of conventional step-wise and greedy search algorithms by fostering a more efficient exploration of solution spaces. Pairwise Preference Reward Model~(PPRM), inspired by Reinforcement Learning from Human Feedback (RLHF), is then used to model pairwise preferences between solutions, utilizing an Enhanced Borda Count (EBC) method to synthesize these preferences into a global ranking score to find better answers. This approach addresses the challenges of scoring variability and non-independent distributions in mathematical reasoning tasks. The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability compared to existing methods like ToT and rStar, particularly in complex Olympiad-level benchmarks, including GPQA, AIME24 and AMC23.
SWE-Search: Enhancing Software Agents with Monte Carlo Tree Search and Iterative Refinement
Software engineers operating in complex and dynamic environments must continuously adapt to evolving requirements, learn iteratively from experience, and reconsider their approaches based on new insights. However, current large language model (LLM)-based software agents often rely on rigid processes and tend to repeat ineffective actions without the capacity to evaluate their performance or adapt their strategies over time. To address these challenges, we propose SWE-Search, a multi-agent framework that integrates Monte Carlo Tree Search (MCTS) with a self-improvement mechanism to enhance software agents' performance on repository-level software tasks. SWE-Search extends traditional MCTS by incorporating a hybrid value function that leverages LLMs for both numerical value estimation and qualitative evaluation. This enables self-feedback loops where agents iteratively refine their strategies based on both quantitative numerical evaluations and qualitative natural language assessments of pursued trajectories. The framework includes a SWE-Agent for adaptive exploration, a Value Agent for iterative feedback, and a Discriminator Agent that facilitates multi-agent debate for collaborative decision-making. Applied to the SWE-bench benchmark, our approach demonstrates a 23% relative improvement in performance across five models compared to standard open-source agents without MCTS. Our analysis reveals how performance scales with increased search depth and identifies key factors that facilitate effective self-evaluation in software agents. This work highlights the potential of self-evaluation driven search techniques to enhance agent reasoning and planning in complex, dynamic software engineering environments.
Have LLMs Advanced Enough? A Challenging Problem Solving Benchmark For Large Language Models
The performance of large language models (LLMs) on existing reasoning benchmarks has significantly improved over the past years. In response, we present JEEBench, a considerably more challenging benchmark dataset for evaluating the problem solving abilities of LLMs. We curate 515 challenging pre-engineering mathematics, physics and chemistry problems from the highly competitive IIT JEE-Advanced exam. Long-horizon reasoning on top of deep in-domain knowledge is essential for solving problems in this benchmark. Our evaluation on various open-source and proprietary models reveals that the highest performance, even after using techniques like self-consistency, self-refinement and chain-of-thought prompting, is less than 40%. The typical failure modes of GPT-4, the best model, are errors in algebraic manipulation, difficulty in grounding abstract concepts into mathematical equations accurately and failure in retrieving relevant domain-specific concepts. We also observe that by mere prompting, GPT-4 is unable to assess risk introduced by negative marking for incorrect answers. For this, we develop a post-hoc confidence-thresholding method over self-consistency, which enables effective response selection. We hope that our challenging benchmark will guide future re-search in problem-solving using LLMs.
Self-Improving Transformers Overcome Easy-to-Hard and Length Generalization Challenges
Large language models often struggle with length generalization and solving complex problem instances beyond their training distribution. We present a self-improvement approach where models iteratively generate and learn from their own solutions, progressively tackling harder problems while maintaining a standard transformer architecture. Across diverse tasks including arithmetic, string manipulation, and maze solving, self-improving enables models to solve problems far beyond their initial training distribution-for instance, generalizing from 10-digit to 100-digit addition without apparent saturation. We observe that in some cases filtering for correct self-generated examples leads to exponential improvements in out-of-distribution performance across training rounds. Additionally, starting from pretrained models significantly accelerates this self-improvement process for several tasks. Our results demonstrate how controlled weak-to-strong curricula can systematically teach a model logical extrapolation without any changes to the positional embeddings, or the model architecture.
Language Models Surface the Unwritten Code of Science and Society
This paper calls on the research community not only to investigate how human biases are inherited by large language models (LLMs) but also to explore how these biases in LLMs can be leveraged to make society's "unwritten code" - such as implicit stereotypes and heuristics - visible and accessible for critique. We introduce a conceptual framework through a case study in science: uncovering hidden rules in peer review - the factors that reviewers care about but rarely state explicitly due to normative scientific expectations. The idea of the framework is to push LLMs to speak out their heuristics through generating self-consistent hypotheses - why one paper appeared stronger in reviewer scoring - among paired papers submitted to 45 computer science conferences, while iteratively searching deeper hypotheses from remaining pairs where existing hypotheses cannot explain. We observed that LLMs' normative priors about the internal characteristics of good science extracted from their self-talk, e.g. theoretical rigor, were systematically updated toward posteriors that emphasize storytelling about external connections, such as how the work is positioned and connected within and across literatures. This shift reveals the primacy of scientific myths about intrinsic properties driving scientific excellence rather than extrinsic contextualization and storytelling that influence conceptions of relevance and significance. Human reviewers tend to explicitly reward aspects that moderately align with LLMs' normative priors (correlation = 0.49) but avoid articulating contextualization and storytelling posteriors in their review comments (correlation = -0.14), despite giving implicit reward to them with positive scores. We discuss the broad applicability of the framework, leveraging LLMs as diagnostic tools to surface the tacit codes underlying human society, enabling more precisely targeted responsible AI.
Let's Sample Step by Step: Adaptive-Consistency for Efficient Reasoning with LLMs
A popular approach for improving the correctness of output from large language models (LLMs) is Self-Consistency - poll the LLM multiple times and output the most frequent solution. Existing Self-Consistency techniques always draw a constant number of samples per question, where a better approach will be to non-uniformly distribute the available budget based on the amount of agreement in the samples drawn so far. In response, we introduce Adaptive-Consistency, a cost-efficient, model-agnostic technique that dynamically adjusts the number of samples per question using a lightweight stopping criterion. Our experiments over 13 datasets and two LLMs demonstrate that Adaptive-Consistency reduces sample budget by up to 6.0 times with an average accuracy drop of less than 0.1%.