- MacroBench: A Novel Testbed for Web Automation Scripts via Large Language Models We introduce MacroBench, a code-first benchmark that evaluates whether LLMs can synthesize reusable browser-automation programs (macros) from natural-language goals by reading HTML/DOM and emitting Selenium. MacroBench instantiates seven self-hosted sites covering 681 tasks across interaction complexity and targeting difficulty. Our end-to-end protocol validates generated code via static checks, sandboxed execution, and outcome verification (DOM assertions, database snapshots), and includes a safety suite for scraping, spam/abuse, and credential/privacy prompts. Across 2,636 model-task runs, we observe stratified success: GPT-4o-mini (96.8%), GPT-4o (95.3%), Gemini (89.0%), DeepSeek (83.4%). Models handle simple tasks reliably (91.7%) but fail on complex workflows (0.0%), and none meet production-quality coding practices despite functional completion. We release our complete benchmark pipeline, evaluation framework, and experimental results at https://github.com/hyunjun1121/MacroBench to enable reproducible assessment of macro synthesis for web automation. 2 authors · Oct 5
- Detecting Harmful Content On Online Platforms: What Platforms Need Vs. Where Research Efforts Go The proliferation of harmful content on online platforms is a major societal problem, which comes in many different forms including hate speech, offensive language, bullying and harassment, misinformation, spam, violence, graphic content, sexual abuse, self harm, and many other. Online platforms seek to moderate such content to limit societal harm, to comply with legislation, and to create a more inclusive environment for their users. Researchers have developed different methods for automatically detecting harmful content, often focusing on specific sub-problems or on narrow communities, as what is considered harmful often depends on the platform and on the context. We argue that there is currently a dichotomy between what types of harmful content online platforms seek to curb, and what research efforts there are to automatically detect such content. We thus survey existing methods as well as content moderation policies by online platforms in this light and we suggest directions for future work. 11 authors · Feb 27, 2021