new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 24

Big data analysis and distributed deep learning for next-generation intrusion detection system optimization

With the growing use of information technology in all life domains, hacking has become more negatively effective than ever before. Also with developing technologies, attacks numbers are growing exponentially every few months and become more sophisticated so that traditional IDS becomes inefficient detecting them. This paper proposes a solution to detect not only new threats with higher detection rate and lower false positive than already used IDS, but also it could detect collective and contextual security attacks. We achieve those results by using Networking Chatbot, a deep recurrent neural network: Long Short Term Memory (LSTM) on top of Apache Spark Framework that has an input of flow traffic and traffic aggregation and the output is a language of two words, normal or abnormal. We propose merging the concepts of language processing, contextual analysis, distributed deep learning, big data, anomaly detection of flow analysis. We propose a model that describes the network abstract normal behavior from a sequence of millions of packets within their context and analyzes them in near real-time to detect point, collective and contextual anomalies. Experiments are done on MAWI dataset, and it shows better detection rate not only than signature IDS, but also better than traditional anomaly IDS. The experiment shows lower false positive, higher detection rate and better point anomalies detection. As for prove of contextual and collective anomalies detection, we discuss our claim and the reason behind our hypothesis. But the experiment is done on random small subsets of the dataset because of hardware limitations, so we share experiment and our future vision thoughts as we wish that full prove will be done in future by other interested researchers who have better hardware infrastructure than ours.

  • 3 authors
·
Sep 28, 2022

Domain Adversarial Spatial-Temporal Network: A Transferable Framework for Short-term Traffic Forecasting across Cities

Accurate real-time traffic forecast is critical for intelligent transportation systems (ITS) and it serves as the cornerstone of various smart mobility applications. Though this research area is dominated by deep learning, recent studies indicate that the accuracy improvement by developing new model structures is becoming marginal. Instead, we envision that the improvement can be achieved by transferring the "forecasting-related knowledge" across cities with different data distributions and network topologies. To this end, this paper aims to propose a novel transferable traffic forecasting framework: Domain Adversarial Spatial-Temporal Network (DASTNet). DASTNet is pre-trained on multiple source networks and fine-tuned with the target network's traffic data. Specifically, we leverage the graph representation learning and adversarial domain adaptation techniques to learn the domain-invariant node embeddings, which are further incorporated to model the temporal traffic data. To the best of our knowledge, we are the first to employ adversarial multi-domain adaptation for network-wide traffic forecasting problems. DASTNet consistently outperforms all state-of-the-art baseline methods on three benchmark datasets. The trained DASTNet is applied to Hong Kong's new traffic detectors, and accurate traffic predictions can be delivered immediately (within one day) when the detector is available. Overall, this study suggests an alternative to enhance the traffic forecasting methods and provides practical implications for cities lacking historical traffic data.

  • 6 authors
·
Feb 7, 2022

SemSpaceFL: A Collaborative Hierarchical Federated Learning Framework for Semantic Communication in 6G LEO Satellites

The advent of the sixth-generation (6G) wireless networks, enhanced by artificial intelligence, promises ubiquitous connectivity through Low Earth Orbit (LEO) satellites. These satellites are capable of collecting vast amounts of geographically diverse and real-time data, which can be immensely valuable for training intelligent models. However, limited inter-satellite communication and data privacy constraints hinder data collection on a single server for training. Therefore, we propose SemSpaceFL, a novel hierarchical federated learning (HFL) framework for LEO satellite networks, with integrated semantic communication capabilities. Our framework introduces a two-tier aggregation architecture where satellite models are first aggregated at regional gateways before final consolidation at a cloud server, which explicitly accounts for satellite mobility patterns and energy constraints. The key innovation lies in our novel aggregation approach, which dynamically adjusts the contribution of each satellite based on its trajectory and association with different gateways, which ensures stable model convergence despite the highly dynamic nature of LEO constellations. To further enhance communication efficiency, we incorporate semantic encoding-decoding techniques trained through the proposed HFL framework, which enables intelligent data compression while maintaining signal integrity. Our experimental results demonstrate that the proposed aggregation strategy achieves superior performance and faster convergence compared to existing benchmarks, while effectively managing the challenges of satellite mobility and energy limitations in dynamic LEO networks.

  • 6 authors
·
May 1

Flag Aggregator: Scalable Distributed Training under Failures and Augmented Losses using Convex Optimization

Modern ML applications increasingly rely on complex deep learning models and large datasets. There has been an exponential growth in the amount of computation needed to train the largest models. Therefore, to scale computation and data, these models are inevitably trained in a distributed manner in clusters of nodes, and their updates are aggregated before being applied to the model. However, a distributed setup is prone to Byzantine failures of individual nodes, components, and software. With data augmentation added to these settings, there is a critical need for robust and efficient aggregation systems. We define the quality of workers as reconstruction ratios in (0,1], and formulate aggregation as a Maximum Likelihood Estimation procedure using Beta densities. We show that the Regularized form of log-likelihood wrt subspace can be approximately solved using iterative least squares solver, and provide convergence guarantees using recent Convex Optimization landscape results. Our empirical findings demonstrate that our approach significantly enhances the robustness of state-of-the-art Byzantine resilient aggregators. We evaluate our method in a distributed setup with a parameter server, and show simultaneous improvements in communication efficiency and accuracy across various tasks. The code is publicly available at https://github.com/hamidralmasi/FlagAggregator

  • 4 authors
·
Feb 12, 2023

Virtual Nodes Improve Long-term Traffic Prediction

Effective traffic prediction is a cornerstone of intelligent transportation systems, enabling precise forecasts of traffic flow, speed, and congestion. While traditional spatio-temporal graph neural networks (ST-GNNs) have achieved notable success in short-term traffic forecasting, their performance in long-term predictions remains limited. This challenge arises from over-squashing problem, where bottlenecks and limited receptive fields restrict information flow and hinder the modeling of global dependencies. To address these challenges, this study introduces a novel framework that incorporates virtual nodes, which are additional nodes added to the graph and connected to existing nodes, in order to aggregate information across the entire graph within a single GNN layer. Our proposed model incorporates virtual nodes by constructing a semi-adaptive adjacency matrix. This matrix integrates distance-based and adaptive adjacency matrices, allowing the model to leverage geographical information while also learning task-specific features from data. Experimental results demonstrate that the inclusion of virtual nodes significantly enhances long-term prediction accuracy while also improving layer-wise sensitivity to mitigate the over-squashing problem. Virtual nodes also offer enhanced explainability by focusing on key intersections and high-traffic areas, as shown by the visualization of their adjacency matrix weights on road network heat maps. Our advanced approach enhances the understanding and management of urban traffic systems, making it particularly well-suited for real-world applications.

  • 4 authors
·
Jan 17

What are the best systems? New perspectives on NLP Benchmarking

In Machine Learning, a benchmark refers to an ensemble of datasets associated with one or multiple metrics together with a way to aggregate different systems performances. They are instrumental in (i) assessing the progress of new methods along different axes and (ii) selecting the best systems for practical use. This is particularly the case for NLP with the development of large pre-trained models (e.g. GPT, BERT) that are expected to generalize well on a variety of tasks. While the community mainly focused on developing new datasets and metrics, there has been little interest in the aggregation procedure, which is often reduced to a simple average over various performance measures. However, this procedure can be problematic when the metrics are on a different scale, which may lead to spurious conclusions. This paper proposes a new procedure to rank systems based on their performance across different tasks. Motivated by the social choice theory, the final system ordering is obtained through aggregating the rankings induced by each task and is theoretically grounded. We conduct extensive numerical experiments (on over 270k scores) to assess the soundness of our approach both on synthetic and real scores (e.g. GLUE, EXTREM, SEVAL, TAC, FLICKR). In particular, we show that our method yields different conclusions on state-of-the-art systems than the mean-aggregation procedure while being both more reliable and robust.

  • 4 authors
·
Feb 8, 2022

LIFL: A Lightweight, Event-driven Serverless Platform for Federated Learning

Federated Learning (FL) typically involves a large-scale, distributed system with individual user devices/servers training models locally and then aggregating their model updates on a trusted central server. Existing systems for FL often use an always-on server for model aggregation, which can be inefficient in terms of resource utilization. They may also be inelastic in their resource management. This is particularly exacerbated when aggregating model updates at scale in a highly dynamic environment with varying numbers of heterogeneous user devices/servers. We present LIFL, a lightweight and elastic serverless cloud platform with fine-grained resource management for efficient FL aggregation at scale. LIFL is enhanced by a streamlined, event-driven serverless design that eliminates the individual heavy-weight message broker and replaces inefficient container-based sidecars with lightweight eBPF-based proxies. We leverage shared memory processing to achieve high-performance communication for hierarchical aggregation, which is commonly adopted to speed up FL aggregation at scale. We further introduce locality-aware placement in LIFL to maximize the benefits of shared memory processing. LIFL precisely scales and carefully reuses the resources for hierarchical aggregation to achieve the highest degree of parallelism while minimizing the aggregation time and resource consumption. Our experimental results show that LIFL achieves significant improvement in resource efficiency and aggregation speed for supporting FL at scale, compared to existing serverful and serverless FL systems.

  • 3 authors
·
May 5, 2024

Real-Time Community Detection in Large Social Networks on a Laptop

For a broad range of research, governmental and commercial applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As social media data sets are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present a single-machine real-time system for large-scale graph processing that allows analysts to interactively explore graph structures. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates user similarities while being robust to noise and queryable in real-time. We achieve single machine real-time performance by compressing the neighbourhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e. communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetise their data, helping them to continue to provide free services that are valued by billions of people globally.

  • 4 authors
·
Jan 15, 2016

Challenging the Need for Packet Spraying in Large-Scale Distributed Training

Large-scale distributed training in production datacenters constitutes a challenging workload bottlenecked by network communication. In response, both major industry players (e.g., Ultra Ethernet Consortium) and parts of academia have surprisingly, and almost unanimously, agreed that packet spraying is necessary to improve the performance of large-scale distributed training workloads. In this paper, we challenge this prevailing belief and pose the question: How close can a singlepath transport approach an optimal multipath transport? We demonstrate that singlepath transport (from a NIC's perspective) is sufficient and can perform nearly as well as an ideal multipath transport with packet spraying, particularly in the context of distributed training in leaf-spine topologies. Our assertion is based on four key observations about workloads driven by collective communication patterns: (i) flows within a collective start almost simultaneously, (ii) flow sizes are nearly equal, (iii) the completion time of a collective is more crucial than individual flow completion times, and (iv) flows can be split upon arrival. We analytically prove that singlepath transport, using minimal flow splitting (at the application layer), is equivalent to an ideal multipath transport with packet spraying in terms of maximum congestion. Our preliminary evaluations support our claims. This paper suggests an alternative agenda for developing next-generation transport protocols tailored for large-scale distributed training.

  • 3 authors
·
Jun 29, 2024

Mixture of Thoughts: Learning to Aggregate What Experts Think, Not Just What They Say

Open-source Large Language Models (LLMs) increasingly specialize by domain (e.g., math, code, general reasoning), motivating systems that leverage complementary strengths across models. Prior multi-LLM approaches either (i) route a query to one or a few experts and generate independently, (ii) aggregate outputs from each model via costly multi-turn exchanges, or (iii) fuse weights into a single model-typically requiring architectural homogeneity. We introduce Mixture of Thoughts (MoT), a simple method for latent-level collaboration among heterogeneous experts under a global routing scheme. For each query, a lightweight router selects top-K experts and designates a primary expert; uniformly placed interaction layers project hidden states into a shared latent space where the primary expert performs cross-attention over its active (selected) peers. Pre-trained experts remain frozen; only the router and the lightweight interaction layers are trained with a novel joint training objective that improves both the expert selection and inter-expert collaboration. Across five in-distribution (ID) and three out-of-distribution (OOD) benchmarks, MoT surpasses the current routing and aggregation-based state-of-the-art, Avengers, by +0.38% and +2.92%, respectively. Further, MoT significantly outperforms the best-performing single model. It achieves this with single-pass inference, runtime comparable to routing baselines, and none of the overheads of iterative aggregation. MoT offers a simple latent-space mechanism for combining heterogeneous LLMs, a practical step toward broader multi-LLM collaboration. Our code is publicly available at https://github.com/jacobfa/mot.

  • 4 authors
·
Sep 25 2

Learnable Commutative Monoids for Graph Neural Networks

Graph neural networks (GNNs) have been shown to be highly sensitive to the choice of aggregation function. While summing over a node's neighbours can approximate any permutation-invariant function over discrete inputs, Cohen-Karlik et al. [2020] proved there are set-aggregation problems for which summing cannot generalise to unbounded inputs, proposing recurrent neural networks regularised towards permutation-invariance as a more expressive aggregator. We show that these results carry over to the graph domain: GNNs equipped with recurrent aggregators are competitive with state-of-the-art permutation-invariant aggregators, on both synthetic benchmarks and real-world problems. However, despite the benefits of recurrent aggregators, their O(V) depth makes them both difficult to parallelise and harder to train on large graphs. Inspired by the observation that a well-behaved aggregator for a GNN is a commutative monoid over its latent space, we propose a framework for constructing learnable, commutative, associative binary operators. And with this, we construct an aggregator of O(log V) depth, yielding exponential improvements for both parallelism and dependency length while achieving performance competitive with recurrent aggregators. Based on our empirical observations, our proposed learnable commutative monoid (LCM) aggregator represents a favourable tradeoff between efficient and expressive aggregators.

  • 2 authors
·
Dec 16, 2022

Forecasting Trajectory and Behavior of Road-Agents Using Spectral Clustering in Graph-LSTMs

We present a novel approach for traffic forecasting in urban traffic scenarios using a combination of spectral graph analysis and deep learning. We predict both the low-level information (future trajectories) as well as the high-level information (road-agent behavior) from the extracted trajectory of each road-agent. Our formulation represents the proximity between the road agents using a weighted dynamic geometric graph (DGG). We use a two-stream graph-LSTM network to perform traffic forecasting using these weighted DGGs. The first stream predicts the spatial coordinates of road-agents, while the second stream predicts whether a road-agent is going to exhibit overspeeding, underspeeding, or neutral behavior by modeling spatial interactions between road-agents. Additionally, we propose a new regularization algorithm based on spectral clustering to reduce the error margin in long-term prediction (3-5 seconds) and improve the accuracy of the predicted trajectories. Moreover, we prove a theoretical upper bound on the regularized prediction error. We evaluate our approach on the Argoverse, Lyft, Apolloscape, and NGSIM datasets and highlight the benefits over prior trajectory prediction methods. In practice, our approach reduces the average prediction error by approximately 75% over prior algorithms and achieves a weighted average accuracy of 91.2% for behavior prediction. Additionally, our spectral regularization improves long-term prediction by up to 70%.

  • 7 authors
·
Dec 2, 2019

NetMamba: Efficient Network Traffic Classification via Pre-training Unidirectional Mamba

Network traffic classification is a crucial research area aiming to enhance service quality, streamline network management, and bolster cybersecurity. To address the growing complexity of transmission encryption techniques, various machine learning and deep learning methods have been proposed. However, existing approaches face two main challenges. Firstly, they struggle with model inefficiency due to the quadratic complexity of the widely used Transformer architecture. Secondly, they suffer from inadequate traffic representation because of discarding important byte information while retaining unwanted biases. To address these challenges, we propose NetMamba, an efficient linear-time state space model equipped with a comprehensive traffic representation scheme. We adopt a specially selected and improved unidirectional Mamba architecture for the networking field, instead of the Transformer, to address efficiency issues. In addition, we design a traffic representation scheme to extract valid information from massive traffic data while removing biased information. Evaluation experiments on six public datasets encompassing three main classification tasks showcase NetMamba's superior classification performance compared to state-of-the-art baselines. It achieves an accuracy rate of nearly 99% (some over 99%) in all tasks. Additionally, NetMamba demonstrates excellent efficiency, improving inference speed by up to 60 times while maintaining comparably low memory usage. Furthermore, NetMamba exhibits superior few-shot learning abilities, achieving better classification performance with fewer labeled data. To the best of our knowledge, NetMamba is the first model to tailor the Mamba architecture for networking.

  • 6 authors
·
May 19, 2024

Explore to Evolve: Scaling Evolved Aggregation Logic via Proactive Online Exploration for Deep Research Agents

Deep research web agents not only retrieve information from diverse sources such as web environments, files, and multimodal inputs, but more importantly, they need to rigorously analyze and aggregate knowledge for insightful research. However, existing open-source deep research agents predominantly focus on enhancing information-seeking capabilities of web agents to locate specific information, while overlooking the essential need for information aggregation, which would limit their ability to support in-depth research. We propose an Explore to Evolve paradigm to scalably construct verifiable training data for web agents. Begins with proactive online exploration, an agent sources grounded information by exploring the real web. Using the collected evidence, the agent then self-evolves an aggregation program by selecting, composing, and refining operations from 12 high-level logical types to synthesize a verifiable QA pair. This evolution from high-level guidance to concrete operations allowed us to scalably produce WebAggregatorQA, a dataset of 10K samples across 50K websites and 11 domains. Based on an open-source agent framework, SmolAgents, we collect supervised fine-tuning trajectories to develop a series of foundation models, WebAggregator. WebAggregator-8B matches the performance of GPT-4.1, while the 32B variant surpasses GPT-4.1 by more than 10% on GAIA-text and closely approaches Claude-3.7-sonnet. Moreover, given the limited availability of benchmarks that evaluate web agents' information aggregation abilities, we construct a human-annotated evaluation split of WebAggregatorQA as a challenging test set. On this benchmark, Claude-3.7-sonnet only achieves 28%, and GPT-4.1 scores 25.8%. Even when agents manage to retrieve all references, they still struggle on WebAggregatorQA, highlighting the need to strengthen the information aggregation capabilities of web agent foundations.

G-Rank: Unsupervised Continuous Learn-to-Rank for Edge Devices in a P2P Network

Ranking algorithms in traditional search engines are powered by enormous training data sets that are meticulously engineered and curated by a centralized entity. Decentralized peer-to-peer (p2p) networks such as torrenting applications and Web3 protocols deliberately eschew centralized databases and computational architectures when designing services and features. As such, robust search-and-rank algorithms designed for such domains must be engineered specifically for decentralized networks, and must be lightweight enough to operate on consumer-grade personal devices such as a smartphone or laptop computer. We introduce G-Rank, an unsupervised ranking algorithm designed exclusively for decentralized networks. We demonstrate that accurate, relevant ranking results can be achieved in fully decentralized networks without any centralized data aggregation, feature engineering, or model training. Furthermore, we show that such results are obtainable with minimal data preprocessing and computational overhead, and can still return highly relevant results even when a user's device is disconnected from the network. G-Rank is highly modular in design, is not limited to categorical data, and can be implemented in a variety of domains with minimal modification. The results herein show that unsupervised ranking models designed for decentralized p2p networks are not only viable, but worthy of further research.

  • 2 authors
·
Jan 29, 2023

A General Theory for Federated Optimization with Asynchronous and Heterogeneous Clients Updates

We propose a novel framework to study asynchronous federated learning optimization with delays in gradient updates. Our theoretical framework extends the standard FedAvg aggregation scheme by introducing stochastic aggregation weights to represent the variability of the clients update time, due for example to heterogeneous hardware capabilities. Our formalism applies to the general federated setting where clients have heterogeneous datasets and perform at least one step of stochastic gradient descent (SGD). We demonstrate convergence for such a scheme and provide sufficient conditions for the related minimum to be the optimum of the federated problem. We show that our general framework applies to existing optimization schemes including centralized learning, FedAvg, asynchronous FedAvg, and FedBuff. The theory here provided allows drawing meaningful guidelines for designing a federated learning experiment in heterogeneous conditions. In particular, we develop in this work FedFix, a novel extension of FedAvg enabling efficient asynchronous federated training while preserving the convergence stability of synchronous aggregation. We empirically demonstrate our theory on a series of experiments showing that asynchronous FedAvg leads to fast convergence at the expense of stability, and we finally demonstrate the improvements of FedFix over synchronous and asynchronous FedAvg.

  • 4 authors
·
Jun 21, 2022

STDA-Meta: A Meta-Learning Framework for Few-Shot Traffic Prediction

As the development of cities, traffic congestion becomes an increasingly pressing issue, and traffic prediction is a classic method to relieve that issue. Traffic prediction is one specific application of spatio-temporal prediction learning, like taxi scheduling, weather prediction, and ship trajectory prediction. Against these problems, classical spatio-temporal prediction learning methods including deep learning, require large amounts of training data. In reality, some newly developed cities with insufficient sensors would not hold that assumption, and the data scarcity makes predictive performance worse. In such situation, the learning method on insufficient data is known as few-shot learning (FSL), and the FSL of traffic prediction remains challenges. On the one hand, graph structures' irregularity and dynamic nature of graphs cannot hold the performance of spatio-temporal learning method. On the other hand, conventional domain adaptation methods cannot work well on insufficient training data, when transferring knowledge from different domains to the intended target domain.To address these challenges, we propose a novel spatio-temporal domain adaptation (STDA) method that learns transferable spatio-temporal meta-knowledge from data-sufficient cities in an adversarial manner. This learned meta-knowledge can improve the prediction performance of data-scarce cities. Specifically, we train the STDA model using a Model-Agnostic Meta-Learning (MAML) based episode learning process, which is a model-agnostic meta-learning framework that enables the model to solve new learning tasks using only a small number of training samples. We conduct numerous experiments on four traffic prediction datasets, and our results show that the prediction performance of our model has improved by 7\% compared to baseline models on the two metrics of MAE and RMSE.

  • 5 authors
·
Oct 31, 2023

Robo-taxi Fleet Coordination at Scale via Reinforcement Learning

Fleets of robo-taxis offering on-demand transportation services, commonly known as Autonomous Mobility-on-Demand (AMoD) systems, hold significant promise for societal benefits, such as reducing pollution, energy consumption, and urban congestion. However, orchestrating these systems at scale remains a critical challenge, with existing coordination algorithms often failing to exploit the systems' full potential. This work introduces a novel decision-making framework that unites mathematical modeling with data-driven techniques. In particular, we present the AMoD coordination problem through the lens of reinforcement learning and propose a graph network-based framework that exploits the main strengths of graph representation learning, reinforcement learning, and classical operations research tools. Extensive evaluations across diverse simulation fidelities and scenarios demonstrate the flexibility of our approach, achieving superior system performance, computational efficiency, and generalizability compared to prior methods. Finally, motivated by the need to democratize research efforts in this area, we release publicly available benchmarks, datasets, and simulators for network-level coordination alongside an open-source codebase designed to provide accessible simulation platforms and establish a standardized validation process for comparing methodologies. Code available at: https://github.com/StanfordASL/RL4AMOD

  • 7 authors
·
Apr 8

GMAN: A Graph Multi-Attention Network for Traffic Prediction

Long-term traffic prediction is highly challenging due to the complexity of traffic systems and the constantly changing nature of many impacting factors. In this paper, we focus on the spatio-temporal factors, and propose a graph multi-attention network (GMAN) to predict traffic conditions for time steps ahead at different locations on a road network graph. GMAN adapts an encoder-decoder architecture, where both the encoder and the decoder consist of multiple spatio-temporal attention blocks to model the impact of the spatio-temporal factors on traffic conditions. The encoder encodes the input traffic features and the decoder predicts the output sequence. Between the encoder and the decoder, a transform attention layer is applied to convert the encoded traffic features to generate the sequence representations of future time steps as the input of the decoder. The transform attention mechanism models the direct relationships between historical and future time steps that helps to alleviate the error propagation problem among prediction time steps. Experimental results on two real-world traffic prediction tasks (i.e., traffic volume prediction and traffic speed prediction) demonstrate the superiority of GMAN. In particular, in the 1 hour ahead prediction, GMAN outperforms state-of-the-art methods by up to 4% improvement in MAE measure. The source code is available at https://github.com/zhengchuanpan/GMAN.

  • 4 authors
·
Nov 11, 2019

Proof-of-Contribution-Based Design for Collaborative Machine Learning on Blockchain

We consider a project (model) owner that would like to train a model by utilizing the local private data and compute power of interested data owners, i.e., trainers. Our goal is to design a data marketplace for such decentralized collaborative/federated learning applications that simultaneously provides i) proof-of-contribution based reward allocation so that the trainers are compensated based on their contributions to the trained model; ii) privacy-preserving decentralized model training by avoiding any data movement from data owners; iii) robustness against malicious parties (e.g., trainers aiming to poison the model); iv) verifiability in the sense that the integrity, i.e., correctness, of all computations in the data market protocol including contribution assessment and outlier detection are verifiable through zero-knowledge proofs; and v) efficient and universal design. We propose a blockchain-based marketplace design to achieve all five objectives mentioned above. In our design, we utilize a distributed storage infrastructure and an aggregator aside from the project owner and the trainers. The aggregator is a processing node that performs certain computations, including assessing trainer contributions, removing outliers, and updating hyper-parameters. We execute the proposed data market through a blockchain smart contract. The deployed smart contract ensures that the project owner cannot evade payment, and honest trainers are rewarded based on their contributions at the end of training. Finally, we implement the building blocks of the proposed data market and demonstrate their applicability in practical scenarios through extensive experiments.

  • 8 authors
·
Feb 27, 2023

AdaptDHM: Adaptive Distribution Hierarchical Model for Multi-Domain CTR Prediction

Large-scale commercial platforms usually involve numerous business domains for diverse business strategies and expect their recommendation systems to provide click-through rate (CTR) predictions for multiple domains simultaneously. Existing promising and widely-used multi-domain models discover domain relationships by explicitly constructing domain-specific networks, but the computation and memory boost significantly with the increase of domains. To reduce computational complexity, manually grouping domains with particular business strategies is common in industrial applications. However, this pre-defined data partitioning way heavily relies on prior knowledge, and it may neglect the underlying data distribution of each domain, hence limiting the model's representation capability. Regarding the above issues, we propose an elegant and flexible multi-distribution modeling paradigm, named Adaptive Distribution Hierarchical Model (AdaptDHM), which is an end-to-end optimization hierarchical structure consisting of a clustering process and classification process. Specifically, we design a distribution adaptation module with a customized dynamic routing mechanism. Instead of introducing prior knowledge for pre-defined data allocation, this routing algorithm adaptively provides a distribution coefficient for each sample to determine which cluster it belongs to. Each cluster corresponds to a particular distribution so that the model can sufficiently capture the commonalities and distinctions between these distinct clusters. Extensive experiments on both public and large-scale Alibaba industrial datasets verify the effectiveness and efficiency of AdaptDHM: Our model achieves impressive prediction accuracy and its time cost during the training stage is more than 50% less than that of other models.

  • 6 authors
·
Nov 22, 2022

Learning from Aggregate responses: Instance Level versus Bag Level Loss Functions

Due to the rise of privacy concerns, in many practical applications the training data is aggregated before being shared with the learner, in order to protect privacy of users' sensitive responses. In an aggregate learning framework, the dataset is grouped into bags of samples, where each bag is available only with an aggregate response, providing a summary of individuals' responses in that bag. In this paper, we study two natural loss functions for learning from aggregate responses: bag-level loss and the instance-level loss. In the former, the model is learnt by minimizing a loss between aggregate responses and aggregate model predictions, while in the latter the model aims to fit individual predictions to the aggregate responses. In this work, we show that the instance-level loss can be perceived as a regularized form of the bag-level loss. This observation lets us compare the two approaches with respect to bias and variance of the resulting estimators, and introduce a novel interpolating estimator which combines the two approaches. For linear regression tasks, we provide a precise characterization of the risk of the interpolating estimator in an asymptotic regime where the size of the training set grows in proportion to the features dimension. Our analysis allows us to theoretically understand the effect of different factors, such as bag size on the model prediction risk. In addition, we propose a mechanism for differentially private learning from aggregate responses and derive the optimal bag size in terms of prediction risk-privacy trade-off. We also carry out thorough experiments to corroborate our theory and show the efficacy of the interpolating estimator.

  • 5 authors
·
Jan 19, 2024

Spatial-Temporal Transformer Networks for Traffic Flow Forecasting

Traffic forecasting has emerged as a core component of intelligent transportation systems. However, timely accurate traffic forecasting, especially long-term forecasting, still remains an open challenge due to the highly nonlinear and dynamic spatial-temporal dependencies of traffic flows. In this paper, we propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) that leverages dynamical directed spatial dependencies and long-range temporal dependencies to improve the accuracy of long-term traffic forecasting. Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies with self-attention mechanism to capture realtime traffic conditions as well as the directionality of traffic flows. Furthermore, different spatial dependency patterns can be jointly modeled with multi-heads attention mechanism to consider diverse relationships related to different factors (e.g. similarity, connectivity and covariance). On the other hand, the temporal transformer is utilized to model long-range bidirectional temporal dependencies across multiple time steps. Finally, they are composed as a block to jointly model the spatial-temporal dependencies for accurate traffic prediction. Compared to existing works, the proposed model enables fast and scalable training over a long range spatial-temporal dependencies. Experiment results demonstrate that the proposed model achieves competitive results compared with the state-of-the-arts, especially forecasting long-term traffic flows on real-world PeMS-Bay and PeMSD7(M) datasets.

  • 7 authors
·
Jan 9, 2020 1

Reconstructing commuters network using machine learning and urban indicators

Human mobility has a significant impact on several layers of society, from infrastructural planning and economics to the spread of diseases and crime. Representing the system as a complex network, in which nodes are assigned to regions (e.g., a city) and links indicate the flow of people between two of them, physics-inspired models have been proposed to quantify the number of people migrating from one city to the other. Despite the advances made by these models, our ability to predict the number of commuters and reconstruct mobility networks remains limited. Here, we propose an alternative approach using machine learning and 22 urban indicators to predict the flow of people and reconstruct the intercity commuters network. Our results reveal that predictions based on machine learning algorithms and urban indicators can reconstruct the commuters network with 90.4% of accuracy and describe 77.6% of the variance observed in the flow of people between cities. We also identify essential features to recover the network structure and the urban indicators mostly related to commuting patterns. As previously reported, distance plays a significant role in commuting, but other indicators, such as Gross Domestic Product (GDP) and unemployment rate, are also driven-forces for people to commute. We believe that our results shed new lights on the modeling of migration and reinforce the role of urban indicators on commuting patterns. Also, because link-prediction and network reconstruction are still open challenges in network science, our results have implications in other areas, like economics, social sciences, and biology, where node attributes can give us information about the existence of links connecting entities in the network.

  • 4 authors
·
Aug 9, 2019

Large-Scale Network Embedding in Apache Spark

Network embedding has been widely used in social recommendation and network analysis, such as recommendation systems and anomaly detection with graphs. However, most of previous approaches cannot handle large graphs efficiently, due to that (i) computation on graphs is often costly and (ii) the size of graph or the intermediate results of vectors could be prohibitively large, rendering it difficult to be processed on a single machine. In this paper, we propose an efficient and effective distributed algorithm for network embedding on large graphs using Apache Spark, which recursively partitions a graph into several small-sized subgraphs to capture the internal and external structural information of nodes, and then computes the network embedding for each subgraph in parallel. Finally, by aggregating the outputs on all subgraphs, we obtain the embeddings of nodes in a linear cost. After that, we demonstrate in various experiments that our proposed approach is able to handle graphs with billions of edges within a few hours and is at least 4 times faster than the state-of-the-art approaches. Besides, it achieves up to 4.25% and 4.27% improvements on link prediction and node classification tasks respectively. In the end, we deploy the proposed algorithms in two online games of Tencent with the applications of friend recommendation and item recommendation, which improve the competitors by up to 91.11% in running time and up to 12.80% in the corresponding evaluation metrics.

  • 1 authors
·
Jun 20, 2021

A Lightweight Method for Tackling Unknown Participation Statistics in Federated Averaging

In federated learning (FL), clients usually have diverse participation statistics that are unknown a priori, which can significantly harm the performance of FL if not handled properly. Existing works aiming at addressing this problem are usually based on global variance reduction, which requires a substantial amount of additional memory in a multiplicative factor equal to the total number of clients. An important open problem is to find a lightweight method for FL in the presence of clients with unknown participation rates. In this paper, we address this problem by adapting the aggregation weights in federated averaging (FedAvg) based on the participation history of each client. We first show that, with heterogeneous participation statistics, FedAvg with non-optimal aggregation weights can diverge from the optimal solution of the original FL objective, indicating the need of finding optimal aggregation weights. However, it is difficult to compute the optimal weights when the participation statistics are unknown. To address this problem, we present a new algorithm called FedAU, which improves FedAvg by adaptively weighting the client updates based on online estimates of the optimal weights without knowing the statistics of client participation. We provide a theoretical convergence analysis of FedAU using a novel methodology to connect the estimation error and convergence. Our theoretical results reveal important and interesting insights, while showing that FedAU converges to an optimal solution of the original objective and has desirable properties such as linear speedup. Our experimental results also verify the advantage of FedAU over baseline methods with various participation patterns.

  • 2 authors
·
Jun 6, 2023

An Edge Assisted Robust Smart Traffic Management and Signalling System for Guiding Emergency Vehicles During Peak Hours

Congestion in traffic is an unavoidable circumstance in many cities in India and other countries. It is an issue of major concern. The steep rise in the number of automobiles on the roads followed by old infrastructure, accidents, pedestrian traffic, and traffic rule violations all add to challenging traffic conditions. Given these poor conditions of traffic, there is a critical need for automatically detecting and signaling systems. There are already various technologies that are used for traffic management and signaling systems like video analysis, infrared sensors, and wireless sensors. The main issue with these methods is they are very costly and high maintenance is required. In this paper, we have proposed a three-phase system that can guide emergency vehicles and manage traffic based on the degree of congestion. In the first phase, the system processes the captured images and calculates the Index value which is used to discover the degree of congestion. The Index value of a particular road depends on its width and the length up to which the camera captures images of that road. We have to take input for the parameters (length and width) while setting up the system. In the second phase, the system checks whether there are any emergency vehicles present or not in any lane. In the third phase, the whole processing and decision-making part is performed at the edge server. The proposed model is robust and it takes into consideration adverse weather conditions such as hazy, foggy, and windy. It works very efficiently in low light conditions also. The edge server is a strategically placed server that provides us with low latency and better connectivity. Using Edge technology in this traffic management system reduces the strain on cloud servers and the system becomes more reliable in real-time because the latency and bandwidth get reduced due to processing at the intermediate edge server.

  • 4 authors
·
Apr 26, 2023

Temporal Graph Analysis with TGX

Real-world networks, with their evolving relations, are best captured as temporal graphs. However, existing software libraries are largely designed for static graphs where the dynamic nature of temporal graphs is ignored. Bridging this gap, we introduce TGX, a Python package specially designed for analysis of temporal networks that encompasses an automated pipeline for data loading, data processing, and analysis of evolving graphs. TGX provides access to eleven built-in datasets and eight external Temporal Graph Benchmark (TGB) datasets as well as any novel datasets in the .csv format. Beyond data loading, TGX facilitates data processing functionalities such as discretization of temporal graphs and node subsampling to accelerate working with larger datasets. For comprehensive investigation, TGX offers network analysis by providing a diverse set of measures, including average node degree and the evolving number of nodes and edges per timestamp. Additionally, the package consolidates meaningful visualization plots indicating the evolution of temporal patterns, such as Temporal Edge Appearance (TEA) and Temporal Edge Trafficc (TET) plots. The TGX package is a robust tool for examining the features of temporal graphs and can be used in various areas like studying social networks, citation networks, and tracking user interactions. We plan to continuously support and update TGX based on community feedback. TGX is publicly available on: https://github.com/ComplexData-MILA/TGX.

  • 5 authors
·
Feb 5, 2024

Prime Collective Communications Library -- Technical Report

This report presents the Prime Collective Communications Library (PCCL), a novel fault-tolerant collective communication library designed for distributed ML workloads over the public internet. PCCL introduces a new programming model that enables dynamic peer joining and failure recovery. The library implements efficient collective operations like all-reduce while providing robust fault tolerance mechanisms that allow the system to continue operating even when peers fail or join during ongoing operations. We demonstrate that PCCL's design enables practical solutions to dynamic membership challenges in workloads with repeated operations and deterministic state advancement. Our implementation passes extensive stress tests across all major operating systems, showing reliable operation even under rapid peer churn and concurrent collective operations. By dispatching to multiple connections, we can efficiently utilize cross-continental long-fat-pipe TCP WAN links, in our experiments achieving up to 45 Gbit/s of bandwidth utilization across Europe and 25 Gbit/s across North America and Europe. PCCL's architecture enables easy implementation of distributed low-communication optimization strategies like DiLoCo, which significantly reduce communication frequency. Combined with quantization, this leads to a significant reduction in the bandwidth required for distributed training workloads. PCCL also allows for concurrent collective operations, which enables optimization strategies like async DiLoCo, which can completely hide communication overhead by implementing one-step delayed parameter updates. PCCL can facilitate exact bit-parity of the shared state across peers in all cases induced by graceful or abrupt peer churn. While PCCL exposes a C99 API, Python bindings are available which are compatible with PyTorch alongside FSDP. PCCL is available under the open source MIT license.

  • 5 authors
·
May 20

Reliable and Efficient Multi-Agent Coordination via Graph Neural Network Variational Autoencoders

Multi-agent coordination is crucial for reliable multi-robot navigation in shared spaces such as automated warehouses. In regions of dense robot traffic, local coordination methods may fail to find a deadlock-free solution. In these scenarios, it is appropriate to let a central unit generate a global schedule that decides the passing order of robots. However, the runtime of such centralized coordination methods increases significantly with the problem scale. In this paper, we propose to leverage Graph Neural Network Variational Autoencoders (GNN-VAE) to solve the multi-agent coordination problem at scale faster than through centralized optimization. We formulate the coordination problem as a graph problem and collect ground truth data using a Mixed-Integer Linear Program (MILP) solver. During training, our learning framework encodes good quality solutions of the graph problem into a latent space. At inference time, solution samples are decoded from the sampled latent variables, and the lowest-cost sample is selected for coordination. Finally, the feasible proposal with the highest performance index is selected for the deployment. By construction, our GNN-VAE framework returns solutions that always respect the constraints of the considered coordination problem. Numerical results show that our approach trained on small-scale problems can achieve high-quality solutions even for large-scale problems with 250 robots, being much faster than other baselines. Project page: https://mengyuest.github.io/gnn-vae-coord

  • 6 authors
·
Mar 4 2

Intelligent Load Balancing in Cloud Computer Systems

Cloud computing is an established technology allowing users to share resources on a large scale, never before seen in IT history. A cloud system connects multiple individual servers in order to process related tasks in several environments at the same time. Clouds are typically more cost-effective than single computers of comparable computing performance. The sheer physical size of the system itself means that thousands of machines may be involved. The focus of this research was to design a strategy to dynamically allocate tasks without overloading Cloud nodes which would result in system stability being maintained at minimum cost. This research has added the following new contributions to the state of knowledge: (i) a novel taxonomy and categorisation of three classes of schedulers, namely OS-level, Cluster and Big Data, which highlight their unique evolution and underline their different objectives; (ii) an abstract model of cloud resources utilisation is specified, including multiple types of resources and consideration of task migration costs; (iii) a virtual machine live migration was experimented with in order to create a formula which estimates the network traffic generated by this process; (iv) a high-fidelity Cloud workload simulator, based on a month-long workload traces from Google's computing cells, was created; (v) two possible approaches to resource management were proposed and examined in the practical part of the manuscript: the centralised metaheuristic load balancer and the decentralised agent-based system. The project involved extensive experiments run on the University of Westminster HPC cluster, and the promising results are presented together with detailed discussions and a conclusion.

  • 1 authors
·
Sep 22

Urban Mobility Assessment Using LLMs

Understanding urban mobility patterns and analyzing how people move around cities helps improve the overall quality of life and supports the development of more livable, efficient, and sustainable urban areas. A challenging aspect of this work is the collection of mobility data by means of user tracking or travel surveys, given the associated privacy concerns, noncompliance, and high cost. This work proposes an innovative AI-based approach for synthesizing travel surveys by prompting large language models (LLMs), aiming to leverage their vast amount of relevant background knowledge and text generation capabilities. Our study evaluates the effectiveness of this approach across various U.S. metropolitan areas by comparing the results against existing survey data at different granularity levels. These levels include (i) pattern level, which compares aggregated metrics like the average number of locations traveled and travel time, (ii) trip level, which focuses on comparing trips as whole units using transition probabilities, and (iii) activity chain level, which examines the sequence of locations visited by individuals. Our work covers several proprietary and open-source LLMs, revealing that open-source base models like Llama-2, when fine-tuned on even a limited amount of actual data, can generate synthetic data that closely mimics the actual travel survey data, and as such provides an argument for using such data in mobility studies.

  • 3 authors
·
Aug 22, 2024

Personalized Subgraph Federated Learning

Subgraphs of a larger global graph may be distributed across multiple devices, and only locally accessible due to privacy restrictions, although there may be links between subgraphs. Recently proposed subgraph Federated Learning (FL) methods deal with those missing links across local subgraphs while distributively training Graph Neural Networks (GNNs) on them. However, they have overlooked the inevitable heterogeneity between subgraphs comprising different communities of a global graph, consequently collapsing the incompatible knowledge from local GNN models. To this end, we introduce a new subgraph FL problem, personalized subgraph FL, which focuses on the joint improvement of the interrelated local GNNs rather than learning a single global model, and propose a novel framework, FEDerated Personalized sUBgraph learning (FED-PUB), to tackle it. Since the server cannot access the subgraph in each client, FED-PUB utilizes functional embeddings of the local GNNs using random graphs as inputs to compute similarities between them, and use the similarities to perform weighted averaging for server-side aggregation. Further, it learns a personalized sparse mask at each client to select and update only the subgraph-relevant subset of the aggregated parameters. We validate our FED-PUB for its subgraph FL performance on six datasets, considering both non-overlapping and overlapping subgraphs, on which it significantly outperforms relevant baselines. Our code is available at https://github.com/JinheonBaek/FED-PUB.

  • 5 authors
·
Jun 21, 2022

Decentralised Traffic Incident Detection via Network Lasso

Traffic incident detection plays a key role in intelligent transportation systems, which has gained great attention in transport engineering. In the past, traditional machine learning (ML) based detection methods achieved good performance under a centralised computing paradigm, where all data are transmitted to a central server for building ML models therein. Nowadays, deep neural networks based federated learning (FL) has become a mainstream detection approach to enable the model training in a decentralised manner while warranting local data governance. Such neural networks-centred techniques, however, have overshadowed the utility of well-established ML-based detection methods. In this work, we aim to explore the potential of potent conventional ML-based detection models in modern traffic scenarios featured by distributed data. We leverage an elegant but less explored distributed optimisation framework named Network Lasso, with guaranteed global convergence for convex problem formulations, integrate the potent convex ML model with it, and compare it with centralised learning, local learning, and federated learning methods atop a well-known traffic incident detection dataset. Experimental results show that the proposed network lasso-based approach provides a promising alternative to the FL-based approach in data-decentralised traffic scenarios, with a strong convergence guarantee while rekindling the significance of conventional ML-based detection methods.

  • 5 authors
·
Feb 28, 2024

Liquid Neural Network-based Adaptive Learning vs. Incremental Learning for Link Load Prediction amid Concept Drift due to Network Failures

Adapting to concept drift is a challenging task in machine learning, which is usually tackled using incremental learning techniques that periodically re-fit a learning model leveraging newly available data. A primary limitation of these techniques is their reliance on substantial amounts of data for retraining. The necessity of acquiring fresh data introduces temporal delays prior to retraining, potentially rendering the models inaccurate if a sudden concept drift occurs in-between two consecutive retrainings. In communication networks, such issue emerges when performing traffic forecasting following a~failure event: post-failure re-routing may induce a drastic shift in distribution and pattern of traffic data, thus requiring a timely model adaptation. In this work, we address this challenge for the problem of traffic forecasting and propose an approach that exploits adaptive learning algorithms, namely, liquid neural networks, which are capable of self-adaptation to abrupt changes in data patterns without requiring any retraining. Through extensive simulations of failure scenarios, we compare the predictive performance of our proposed approach to that of a reference method based on incremental learning. Experimental results show that our proposed approach outperforms incremental learning-based methods in situations where the shifts in traffic patterns are drastic.

  • 9 authors
·
Apr 8, 2024

Ad-load Balancing via Off-policy Learning in a Content Marketplace

Ad-load balancing is a critical challenge in online advertising systems, particularly in the context of social media platforms, where the goal is to maximize user engagement and revenue while maintaining a satisfactory user experience. This requires the optimization of conflicting objectives, such as user satisfaction and ads revenue. Traditional approaches to ad-load balancing rely on static allocation policies, which fail to adapt to changing user preferences and contextual factors. In this paper, we present an approach that leverages off-policy learning and evaluation from logged bandit feedback. We start by presenting a motivating analysis of the ad-load balancing problem, highlighting the conflicting objectives between user satisfaction and ads revenue. We emphasize the nuances that arise due to user heterogeneity and the dependence on the user's position within a session. Based on this analysis, we define the problem as determining the optimal ad-load for a particular feed fetch. To tackle this problem, we propose an off-policy learning framework that leverages unbiased estimators such as Inverse Propensity Scoring (IPS) and Doubly Robust (DR) to learn and estimate the policy values using offline collected stochastic data. We present insights from online A/B experiments deployed at scale across over 80 million users generating over 200 million sessions, where we find statistically significant improvements in both user satisfaction metrics and ads revenue for the platform.

  • 4 authors
·
Sep 19, 2023

From Classification to Optimization: Slicing and Resource Management with TRACTOR

5G and beyond networks promise advancements in bandwidth, latency, and connectivity. The Open Radio Access Network (O-RAN) framework enhances flexibility through network slicing and closed-loop RAN control. Central to this evolution is integrating machine learning (ML) for dynamic network control. This paper presents a framework to optimize O-RAN operation. First, we build and share a robust O-RAN dataset from real-world traffic captured across diverse locations and mobility scenarios, replicated within a full-stack srsRAN-based O-RAN system using the Colosseum RF emulator. This dataset supports ML training and deployment. We then introduce a traffic classification approach leveraging various ML models, demonstrating rapid training, testing, and refinement to improve accuracy. With up to 99% offline accuracy and 92% online accuracy for specific slices, our framework adapts efficiently to different models and network conditions. Finally, we present a physical resource block (PRB) assignment optimization strategy using reinforcement learning to refine resource allocation. Our learned policy achieves a mean performance score (0.631), surpassing a manually configured expert policy (0.609) and a random baseline (0.588), demonstrating improved PRB utilization. More importantly, our approach exhibits lower variability, with the Coefficient of Variation (CV) reduced by up to an order of magnitude in three out of four cases, ensuring more consistent performance. Our contributions, including open-source tools and datasets, accelerate O-RAN and ML-driven network control research.

  • 6 authors
·
Dec 12, 2023

Market-based Short-Term Allocations in Small Cell Wireless Networks

Mobile users (or UEs, to use 3GPP terminology) served by small cells in dense urban settings may abruptly experience a significant deterioration in their channel to their serving base stations (BSs) in several scenarios, such as after turning a corner around a tall building, or a sudden knot of traffic blocking the direct path between the UE and its serving BS. In this work, we propose a scheme to temporarily increase the data rate to/from this UE with additional bandwidth from the nearest Coordinated Multi-Point (CoMP) cluster of BSs, while the slower process of handover of the UE to a new serving BS is ongoing. We emphasize that this additional bandwidth is additional to the data rates the UE is getting over its primary connection to the current serving BS and, after the handover, to the new serving BS. The key novelty of the present work is the proposal of a decentralized market-based resource allocation method to perform resource allocation to support Coordinated Beamforming (CB) CoMP. It is scalable to large numbers of UEs and BSs, and it is fast because resource allocations are made bilaterally, between BSs and UEs. Once the resource allocation to the UE has been made, the coordinated of transmissions occurs as per the usual CB methods. Thus the proposed method has the benefit of giving the UE access to its desired amount of resources fast, without waiting for handover to complete, or reporting channel state information before it knows the resources it will be allocated for receiving transmissions from the serving BS.

  • 2 authors
·
May 8, 2020

Contrastive Self-Supervised Network Intrusion Detection using Augmented Negative Pairs

Network intrusion detection remains a critical challenge in cybersecurity. While supervised machine learning models achieve state-of-the-art performance, their reliance on large labelled datasets makes them impractical for many real-world applications. Anomaly detection methods, which train exclusively on benign traffic to identify malicious activity, suffer from high false positive rates, limiting their usability. Recently, self-supervised learning techniques have demonstrated improved performance with lower false positive rates by learning discriminative latent representations of benign traffic. In particular, contrastive self-supervised models achieve this by minimizing the distance between similar (positive) views of benign traffic while maximizing it between dissimilar (negative) views. Existing approaches generate positive views through data augmentation and treat other samples as negative. In contrast, this work introduces Contrastive Learning using Augmented Negative pairs (CLAN), a novel paradigm for network intrusion detection where augmented samples are treated as negative views - representing potentially malicious distributions - while other benign samples serve as positive views. This approach enhances both classification accuracy and inference efficiency after pretraining on benign traffic. Experimental evaluation on the Lycos2017 dataset demonstrates that the proposed method surpasses existing self-supervised and anomaly detection techniques in a binary classification task. Furthermore, when fine-tuned on a limited labelled dataset, the proposed approach achieves superior multi-class classification performance compared to existing self-supervised models.

  • 4 authors
·
Sep 8

Vanishing Variance Problem in Fully Decentralized Neural-Network Systems

Federated learning and gossip learning are emerging methodologies designed to mitigate data privacy concerns by retaining training data on client devices and exclusively sharing locally-trained machine learning (ML) models with others. The primary distinction between the two lies in their approach to model aggregation: federated learning employs a centralized parameter server, whereas gossip learning adopts a fully decentralized mechanism, enabling direct model exchanges among nodes. This decentralized nature often positions gossip learning as less efficient compared to federated learning. Both methodologies involve a critical step: computing a representation of received ML models and integrating this representation into the existing model. Conventionally, this representation is derived by averaging the received models, exemplified by the FedAVG algorithm. Our findings suggest that this averaging approach inherently introduces a potential delay in model convergence. We identify the underlying cause and refer to it as the "vanishing variance" problem, where averaging across uncorrelated ML models undermines the optimal variance established by the Xavier weight initialization. Unlike federated learning where the central server ensures model correlation, and unlike traditional gossip learning which circumvents this problem through model partitioning and sampling, our research introduces a variance-corrected model averaging algorithm. This novel algorithm preserves the optimal variance needed during model averaging, irrespective of network topology or non-IID data distributions. Our extensive simulation results demonstrate that our approach enables gossip learning to achieve convergence efficiency comparable to that of federated learning.

  • 4 authors
·
Apr 6, 2024

CityFlow: A Multi-Agent Reinforcement Learning Environment for Large Scale City Traffic Scenario

Traffic signal control is an emerging application scenario for reinforcement learning. Besides being as an important problem that affects people's daily life in commuting, traffic signal control poses its unique challenges for reinforcement learning in terms of adapting to dynamic traffic environment and coordinating thousands of agents including vehicles and pedestrians. A key factor in the success of modern reinforcement learning relies on a good simulator to generate a large number of data samples for learning. The most commonly used open-source traffic simulator SUMO is, however, not scalable to large road network and large traffic flow, which hinders the study of reinforcement learning on traffic scenarios. This motivates us to create a new traffic simulator CityFlow with fundamentally optimized data structures and efficient algorithms. CityFlow can support flexible definitions for road network and traffic flow based on synthetic and real-world data. It also provides user-friendly interface for reinforcement learning. Most importantly, CityFlow is more than twenty times faster than SUMO and is capable of supporting city-wide traffic simulation with an interactive render for monitoring. Besides traffic signal control, CityFlow could serve as the base for other transportation studies and can create new possibilities to test machine learning methods in the intelligent transportation domain.

  • 10 authors
·
May 13, 2019

MOHAF: A Multi-Objective Hierarchical Auction Framework for Scalable and Fair Resource Allocation in IoT Ecosystems

The rapid growth of Internet of Things (IoT) ecosystems has intensified the challenge of efficiently allocating heterogeneous resources in highly dynamic, distributed environments. Conventional centralized mechanisms and single-objective auction models, focusing solely on metrics such as cost minimization or revenue maximization, struggle to deliver balanced system performance. This paper proposes the Multi-Objective Hierarchical Auction Framework (MOHAF), a distributed resource allocation mechanism that jointly optimizes cost, Quality of Service (QoS), energy efficiency, and fairness. MOHAF integrates hierarchical clustering to reduce computational complexity with a greedy, submodular optimization strategy that guarantees a (1-1/e) approximation ratio. A dynamic pricing mechanism adapts in real time to resource utilization, enhancing market stability and allocation quality. Extensive experiments on the Google Cluster Data trace, comprising 3,553 requests and 888 resources, demonstrate MOHAF's superior allocation efficiency (0.263) compared to Greedy (0.185), First-Price (0.138), and Random (0.101) auctions, while achieving perfect fairness (Jain's index = 1.000). Ablation studies reveal the critical influence of cost and QoS components in sustaining balanced multi-objective outcomes. With near-linear scalability, theoretical guarantees, and robust empirical performance, MOHAF offers a practical and adaptable solution for large-scale IoT deployments, effectively reconciling efficiency, equity, and sustainability in distributed resource coordination.

  • 6 authors
·
Aug 20

Layer-stacked Attention for Heterogeneous Network Embedding

The heterogeneous network is a robust data abstraction that can model entities of different types interacting in various ways. Such heterogeneity brings rich semantic information but presents nontrivial challenges in aggregating the heterogeneous relationships between objects - especially those of higher-order indirect relations. Recent graph neural network approaches for representation learning on heterogeneous networks typically employ the attention mechanism, which is often only optimized for predictions based on direct links. Furthermore, even though most deep learning methods can aggregate higher-order information by building deeper models, such a scheme can diminish the degree of interpretability. To overcome these challenges, we explore an architecture - Layer-stacked ATTention Embedding (LATTE) - that automatically decomposes higher-order meta relations at each layer to extract the relevant heterogeneous neighborhood structures for each node. Additionally, by successively stacking layer representations, the learned node embedding offers a more interpretable aggregation scheme for nodes of different types at different neighborhood ranges. We conducted experiments on several benchmark heterogeneous network datasets. In both transductive and inductive node classification tasks, LATTE can achieve state-of-the-art performance compared to existing approaches, all while offering a lightweight model. With extensive experimental analyses and visualizations, the framework can demonstrate the ability to extract informative insights on heterogeneous networks.

  • 2 authors
·
Sep 17, 2020

LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation

Graph Convolution Network (GCN) has become new state-of-the-art for collaborative filtering. Nevertheless, the reasons of its effectiveness for recommendation are not well understood. Existing work that adapts GCN to recommendation lacks thorough ablation analyses on GCN, which is originally designed for graph classification tasks and equipped with many neural network operations. However, we empirically find that the two most common designs in GCNs -- feature transformation and nonlinear activation -- contribute little to the performance of collaborative filtering. Even worse, including them adds to the difficulty of training and degrades recommendation performance. In this work, we aim to simplify the design of GCN to make it more concise and appropriate for recommendation. We propose a new model named LightGCN, including only the most essential component in GCN -- neighborhood aggregation -- for collaborative filtering. Specifically, LightGCN learns user and item embeddings by linearly propagating them on the user-item interaction graph, and uses the weighted sum of the embeddings learned at all layers as the final embedding. Such simple, linear, and neat model is much easier to implement and train, exhibiting substantial improvements (about 16.0\% relative improvement on average) over Neural Graph Collaborative Filtering (NGCF) -- a state-of-the-art GCN-based recommender model -- under exactly the same experimental setting. Further analyses are provided towards the rationality of the simple LightGCN from both analytical and empirical perspectives.

  • 6 authors
·
Feb 6, 2020

A hybrid deep-learning-metaheuristic framework for bi-level network design problems

This study proposes a hybrid deep-learning-metaheuristic framework with a bi-level architecture for road network design problems (NDPs). We train a graph neural network (GNN) to approximate the solution of the user equilibrium (UE) traffic assignment problem and use inferences made by the trained model to calculate fitness function evaluations of a genetic algorithm (GA) to approximate solutions for NDPs. Using three test networks, two NDP variants and an exact solver as benchmark, we show that on average, our proposed framework can provide solutions within 1.5% gap of the best results in less than 0.5% of the time used by the exact solution procedure. Our framework can be utilized within an expert system for infrastructure planning to determine the best infrastructure planning and management decisions under different scenarios. Given the flexibility of the framework, it can easily be adapted to many other decision problems that can be modeled as bi-level problems on graphs. Moreover, we foreseen interesting future research directions, thus we also put forward a brief research agenda for this topic. The key observation from our research that can shape future research is that the fitness function evaluation time using the inferences made by the GNN model was in the order of milliseconds, which points to an opportunity and a need for novel heuristics that 1) can cope well with noisy fitness function values provided by deep learning models, and 2) can use the significantly enlarged efficiency of the evaluation step to explore the search space effectively (rather than efficiently). This opens a new avenue for a modern class of metaheuristics that are crafted for use with AI-powered predictors.

  • 2 authors
·
Mar 10, 2023

Truck Parking Usage Prediction with Decomposed Graph Neural Networks

Truck parking on freight corridors faces the major challenge of insufficient parking spaces. This is exacerbated by the Hour-of-Service (HOS) regulations, which often result in unauthorized parking practices, causing safety concerns. It has been shown that providing accurate parking usage prediction can be a cost-effective solution to reduce unsafe parking practices. In light of this, existing studies have developed various methods to predict the usage of a truck parking site and have demonstrated satisfactory accuracy. However, these studies focused on a single parking site, and few approaches have been proposed to predict the usage of multiple truck parking sites considering spatio-temporal dependencies, due to the lack of data. This paper aims to fill this gap and presents the Regional Temporal Graph Convolutional Network (RegT-GCN) to predict parking usage across the entire state to provide more comprehensive truck parking information. The framework leverages the topological structures of truck parking site locations and historical parking data to predict the occupancy rate considering spatio-temporal dependencies across a state. To achieve this, we introduce a Regional Decomposition approach, which effectively captures the geographical characteristics of the truck parking locations and their spatial correlations. Evaluation results demonstrate that the proposed model outperforms other baseline models, showing the effectiveness of our regional decomposition. The code is available at https://github.com/raynbowy23/RegT-GCN.

  • 6 authors
·
Jan 23, 2024

UltraGCN: Ultra Simplification of Graph Convolutional Networks for Recommendation

With the recent success of graph convolutional networks (GCNs), they have been widely applied for recommendation, and achieved impressive performance gains. The core of GCNs lies in its message passing mechanism to aggregate neighborhood information. However, we observed that message passing largely slows down the convergence of GCNs during training, especially for large-scale recommender systems, which hinders their wide adoption. LightGCN makes an early attempt to simplify GCNs for collaborative filtering by omitting feature transformations and nonlinear activations. In this paper, we take one step further to propose an ultra-simplified formulation of GCNs (dubbed UltraGCN), which skips infinite layers of message passing for efficient recommendation. Instead of explicit message passing, UltraGCN resorts to directly approximate the limit of infinite-layer graph convolutions via a constraint loss. Meanwhile, UltraGCN allows for more appropriate edge weight assignments and flexible adjustment of the relative importances among different types of relationships. This finally yields a simple yet effective UltraGCN model, which is easy to implement and efficient to train. Experimental results on four benchmark datasets show that UltraGCN not only outperforms the state-of-the-art GCN models but also achieves more than 10x speedup over LightGCN. Our source code will be available at https://reczoo.github.io/UltraGCN.

  • 6 authors
·
Oct 28, 2021

FAROS: Fair Graph Generation via Attribute Switching Mechanisms

Recent advancements in graph diffusion models (GDMs) have enabled the synthesis of realistic network structures, yet ensuring fairness in the generated data remains a critical challenge. Existing solutions attempt to mitigate bias by re-training the GDMs with ad-hoc fairness constraints. Conversely, with this work, we propose FAROS, a novel FAir graph geneRatiOn framework leveraging attribute Switching mechanisms and directly running in the generation process of the pre-trained GDM. Technically, our approach works by altering nodes' sensitive attributes during the generation. To this end, FAROS calculates the optimal fraction of switching nodes, and selects the diffusion step to perform the switch by setting tailored multi-criteria constraints to preserve the node-topology profile from the original distribution (a proxy for accuracy) while ensuring the edge independence on the sensitive attributes for the generated graph (a proxy for fairness). Our experiments on benchmark datasets for link prediction demonstrate that the proposed approach effectively reduces fairness discrepancies while maintaining comparable (or even higher) accuracy performance to other similar baselines. Noteworthy, FAROS is also able to strike a better accuracy-fairness trade-off than other competitors in some of the tested settings under the Pareto optimality concept, demonstrating the effectiveness of the imposed multi-criteria constraints.

  • 5 authors
·
Jul 4 1

Measures of the Capital Network of the U.S. Economy

About two million U.S. corporations and partnerships are linked to each other and human investors by about 15 million owner-subsidiary links. Comparable social networks such as corporate board memberships and socially-built systems such as the network of Internet links are "small worlds," meaning a network with a small diameter and link densities with a power-law distribution, but these properties had not yet been measured for the business entity network. This article shows that both inbound links and outbound links display a power-law distribution with a coefficient of concentration estimable to within a generally narrow confidence interval, overall, for subnetworks including only business entities, only for the great connected component of the network, and in subnetworks with edges associated with certain industries, for all years 2009-2021. In contrast to other networks with power-law distributed link densities, the network is mostly a tree, and has a diameter an order of magnitude larger than a small-world network with the same link distribution. The regularity of the power-law distribution indicates that its coefficient can be used as a new, well-defined macroeconomic metric for the concentration of capital flows in an economy. Economists might use it as a new measure of market concentration which is more comprehensive than measures based only on the few biggest firms. Comparing capital link concentrations across countries would facilitate modeling the relationship between business network characteristics and other macroeconomic indicators.

  • 1 authors
·
Jan 22, 2024

CloudFormer: An Attention-based Performance Prediction for Public Clouds with Unknown Workload

Cloud platforms are increasingly relied upon to host diverse, resource-intensive workloads due to their scalability, flexibility, and cost-efficiency. In multi-tenant cloud environments, virtual machines are consolidated on shared physical servers to improve resource utilization. While virtualization guarantees resource partitioning for CPU, memory, and storage, it cannot ensure performance isolation. Competition for shared resources such as last-level cache, memory bandwidth, and network interfaces often leads to severe performance degradation. Existing management techniques, including VM scheduling and resource provisioning, require accurate performance prediction to mitigate interference. However, this remains challenging in public clouds due to the black-box nature of VMs and the highly dynamic nature of workloads. To address these limitations, we propose CloudFormer, a dual-branch Transformer-based model designed to predict VM performance degradation in black-box environments. CloudFormer jointly models temporal dynamics and system-level interactions, leveraging 206 system metrics at one-second resolution across both static and dynamic scenarios. This design enables the model to capture transient interference effects and adapt to varying workload conditions without scenario-specific tuning. Complementing the methodology, we provide a fine-grained dataset that significantly expands the temporal resolution and metric diversity compared to existing benchmarks. Experimental results demonstrate that CloudFormer consistently outperforms state-of-the-art baselines across multiple evaluation metrics, achieving robust generalization across diverse and previously unseen workloads. Notably, CloudFormer attains a mean absolute error (MAE) of just 7.8%, representing a substantial improvement in predictive accuracy and outperforming existing methods at least by 28%.

  • 4 authors
·
Sep 3

FRL: Federated Rank Learning

Federated learning (FL) allows mutually untrusted clients to collaboratively train a common machine learning model without sharing their private/proprietary training data among each other. FL is unfortunately susceptible to poisoning by malicious clients who aim to hamper the accuracy of the commonly trained model through sending malicious model updates during FL's training process. We argue that the key factor to the success of poisoning attacks against existing FL systems is the large space of model updates available to the clients, allowing malicious clients to search for the most poisonous model updates, e.g., by solving an optimization problem. To address this, we propose Federated Rank Learning (FRL). FRL reduces the space of client updates from model parameter updates (a continuous space of float numbers) in standard FL to the space of parameter rankings (a discrete space of integer values). To be able to train the global model using parameter ranks (instead of parameter weights), FRL leverage ideas from recent supermasks training mechanisms. Specifically, FRL clients rank the parameters of a randomly initialized neural network (provided by the server) based on their local training data. The FRL server uses a voting mechanism to aggregate the parameter rankings submitted by clients in each training epoch to generate the global ranking of the next training epoch. Intuitively, our voting-based aggregation mechanism prevents poisoning clients from making significant adversarial modifications to the global model, as each client will have a single vote! We demonstrate the robustness of FRL to poisoning through analytical proofs and experimentation. We also show FRL's high communication efficiency. Our experiments demonstrate the superiority of FRL in real-world FL settings.

  • 3 authors
·
Oct 8, 2021

Multi-Objective GFlowNets

In many applications of machine learning, like drug discovery and material design, the goal is to generate candidates that simultaneously maximize a set of objectives. As these objectives are often conflicting, there is no single candidate that simultaneously maximizes all objectives, but rather a set of Pareto-optimal candidates where one objective cannot be improved without worsening another. Moreover, in practice, these objectives are often under-specified, making the diversity of candidates a key consideration. The existing multi-objective optimization methods focus predominantly on covering the Pareto front, failing to capture diversity in the space of candidates. Motivated by the success of GFlowNets for generation of diverse candidates in a single objective setting, in this paper we consider Multi-Objective GFlowNets (MOGFNs). MOGFNs consist of a novel Conditional GFlowNet which models a family of single-objective sub-problems derived by decomposing the multi-objective optimization problem. Our work is the first to empirically demonstrate conditional GFlowNets. Through a series of experiments on synthetic and benchmark tasks, we empirically demonstrate that MOGFNs outperform existing methods in terms of Hypervolume, R2-distance and candidate diversity. We also demonstrate the effectiveness of MOGFNs over existing methods in active learning settings. Finally, we supplement our empirical results with a careful analysis of each component of MOGFNs.

  • 7 authors
·
Oct 23, 2022

NanoFlow: Towards Optimal Large Language Model Serving Throughput

The increasing usage of Large Language Models (LLMs) has resulted in a surging demand for planet-scale serving systems, where tens of thousands of GPUs continuously serve hundreds of millions of users. Consequently, throughput (under reasonable latency constraints) has emerged as a key metric that determines serving systems' performance. To boost throughput, various methods of inter-device parallelism (e.g., data, tensor, pipeline) have been explored. However, existing methods do not consider overlapping the utilization of different resources within a single device, leading to underutilization and sub-optimal performance. We propose NanoFlow, a novel serving framework that exploits intra-device parallelism, which overlaps the usage of resources including compute, memory, and network within a single device through operation co-scheduling. To exploit intra-device parallelism, NanoFlow introduces two key innovations: First, NanoFlow splits requests into nano-batches at the granularity of operations, which breaks the dependency of sequential operations in LLM inference and enables overlapping; then, to get benefit from overlapping, NanoFlow uses an operation-level pipeline with execution unit scheduling, which partitions the device's functional units and simultaneously executes different operations in each unit. NanoFlow automates the pipeline setup using a parameter search algorithm, which enables easily porting NanoFlow to different models. We implement NanoFlow on NVIDIA GPUs and evaluate end-to-end serving throughput on several popular models such as LLaMA-2-70B, Mixtral 8x7B, LLaMA-3-8B, etc.. With practical workloads, NanoFlow provides 1.91x throughput boost compared to state-of-the-art serving systems achieving 59% to 72% of optimal throughput across ported models.

  • 15 authors
·
Aug 22, 2024 2

Value Function is All You Need: A Unified Learning Framework for Ride Hailing Platforms

Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day, providing great promises for improving transportation efficiency through the tasks of order dispatching and vehicle repositioning. Existing studies, however, usually consider the two tasks in simplified settings that hardly address the complex interactions between the two, the real-time fluctuations between supply and demand, and the necessary coordinations due to the large-scale nature of the problem. In this paper we propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks. At the center of the framework is a globally shared value function that is updated continuously using online experiences generated from real-time platform transactions. To improve the sample-efficiency and the robustness, we further propose a novel periodic ensemble method combining the fast online learning with a large-scale offline training scheme that leverages the abundant historical driver trajectory data. This allows the proposed framework to adapt quickly to the highly dynamic environment, to generalize robustly to recurrent patterns and to drive implicit coordinations among the population of managed vehicles. Extensive experiments based on real-world datasets show considerably improvements over other recently proposed methods on both tasks. Particularly, V1D3 outperforms the first prize winners of both dispatching and repositioning tracks in the KDD Cup 2020 RL competition, achieving state-of-the-art results on improving both total driver income and user experience related metrics.

  • 9 authors
·
May 18, 2021

semi-PD: Towards Efficient LLM Serving via Phase-Wise Disaggregated Computation and Unified Storage

Existing large language model (LLM) serving systems fall into two categories: 1) a unified system where prefill phase and decode phase are co-located on the same GPU, sharing the unified computational resource and storage, and 2) a disaggregated system where the two phases are disaggregated to different GPUs. The design of the disaggregated system addresses the latency interference and sophisticated scheduling issues in the unified system but leads to storage challenges including 1) replicated weights for both phases that prevent flexible deployment, 2) KV cache transfer overhead between the two phases, 3) storage imbalance that causes substantial wasted space of the GPU capacity, and 4) suboptimal resource adjustment arising from the difficulties in migrating KV cache. Such storage inefficiency delivers poor serving performance under high request rates. In this paper, we identify that the advantage of the disaggregated system lies in the disaggregated computation, i.e., partitioning the computational resource to enable the asynchronous computation of two phases. Thus, we propose a novel LLM serving system, semi-PD, characterized by disaggregated computation and unified storage. In semi-PD, we introduce a computation resource controller to achieve disaggregated computation at the streaming multi-processor (SM) level, and a unified memory manager to manage the asynchronous memory access from both phases. semi-PD has a low-overhead resource adjustment mechanism between the two phases, and a service-level objective (SLO) aware dynamic partitioning algorithm to optimize the SLO attainment. Compared to state-of-the-art systems, semi-PD maintains lower latency at higher request rates, reducing the average end-to-end latency per request by 1.27-2.58x on DeepSeek series models, and serves 1.55-1.72x more requests adhering to latency constraints on Llama series models.

  • 12 authors
·
Apr 28

Momentum Benefits Non-IID Federated Learning Simply and Provably

Federated learning is a powerful paradigm for large-scale machine learning, but it faces significant challenges due to unreliable network connections, slow communication, and substantial data heterogeneity across clients. FedAvg and SCAFFOLD are two prominent algorithms to address these challenges. In particular, FedAvg employs multiple local updates before communicating with a central server, while SCAFFOLD maintains a control variable on each client to compensate for ``client drift'' in its local updates. Various methods have been proposed to enhance the convergence of these two algorithms, but they either make impractical adjustments to the algorithmic structure or rely on the assumption of bounded data heterogeneity. This paper explores the utilization of momentum to enhance the performance of FedAvg and SCAFFOLD. When all clients participate in the training process, we demonstrate that incorporating momentum allows FedAvg to converge without relying on the assumption of bounded data heterogeneity even using a constant local learning rate. This is novel and fairly surprising as existing analyses for FedAvg require bounded data heterogeneity even with diminishing local learning rates. In partial client participation, we show that momentum enables SCAFFOLD to converge provably faster without imposing any additional assumptions. Furthermore, we use momentum to develop new variance-reduced extensions of FedAvg and SCAFFOLD, which exhibit state-of-the-art convergence rates. Our experimental results support all theoretical findings.

  • 4 authors
·
Jun 28, 2023

Doing More with Less -- Implementing Routing Strategies in Large Language Model-Based Systems: An Extended Survey

Large Language Models (LLM)-based systems, i.e. interconnected elements that include an LLM as a central component (e.g., conversational agents), are typically monolithic static architectures that rely on a single LLM for all user queries. However, they often require different preprocessing strategies, levels of reasoning, or knowledge. Generalist LLMs (i.e. GPT-4), trained on very large multi-topic corpora, can perform well in a variety of tasks. However, they require significant financial, energy, and hardware resources that may not be justified for basic tasks. This implies potentially investing in unnecessary costs for a given query. To overcome this problem, a routing mechanism routes user queries to the most suitable components, such as smaller LLMs or experts in specific topics. This approach may improve response quality while minimising costs. Routing can be expanded to other components of the conversational agent architecture, such as the selection of optimal embedding strategies. This paper explores key considerations for integrating routing into LLM-based systems, focusing on resource management, cost definition, and strategy selection. Our main contributions include a formalisation of the problem, a novel taxonomy of existing approaches emphasising relevance and resource efficiency, and a comparative analysis of these strategies in relation to industry practices. Finally, we identify critical challenges and directions for future research.

  • 6 authors
·
Feb 1

Edge Computing in Distributed Acoustic Sensing: An Application in Traffic Monitoring

Distributed acoustic sensing (DAS) technology leverages fiber optic cables to detect vibrations and acoustic events, which is a promising solution for real-time traffic monitoring. In this paper, we introduce a novel methodology for detecting and tracking vehicles using DAS data, focusing on real-time processing through edge computing. Our approach applies the Hough transform to detect straight-line segments in the spatiotemporal DAS data, corresponding to vehicles crossing the Astfjord bridge in Norway. These segments are further clustered using the Density-based spatial clustering of applications with noise (DBSCAN) algorithm to consolidate multiple detections of the same vehicle, reducing noise and improving accuracy. The proposed workflow effectively counts vehicles and estimates their speed with only tens of seconds latency, enabling real-time traffic monitoring on the edge. To validate the system, we compare DAS data with simultaneous video footage, achieving high accuracy in vehicle detection, including the distinction between cars and trucks based on signal strength and frequency content. Results show that the system is capable of processing large volumes of data efficiently. We also analyze vehicle speeds and traffic patterns, identifying temporal trends and variations in traffic flow. Real-time deployment on edge devices allows immediate analysis and visualization via cloud-based platforms. In addition to traffic monitoring, the method successfully detected structural responses in the bridge, highlighting its potential use in structural health monitoring.

  • 3 authors
·
Oct 4, 2024

NAICS-Aware Graph Neural Networks for Large-Scale POI Co-visitation Prediction: A Multi-Modal Dataset and Methodology

Understanding where people go after visiting one business is crucial for urban planning, retail analytics, and location-based services. However, predicting these co-visitation patterns across millions of venues remains challenging due to extreme data sparsity and the complex interplay between spatial proximity and business relationships. Traditional approaches using only geographic distance fail to capture why coffee shops attract different customer flows than fine dining restaurants, even when co-located. We introduce NAICS-aware GraphSAGE, a novel graph neural network that integrates business taxonomy knowledge through learnable embeddings to predict population-scale co-visitation patterns. Our key insight is that business semantics, captured through detailed industry codes, provide crucial signals that pure spatial models cannot explain. The approach scales to massive datasets (4.2 billion potential venue pairs) through efficient state-wise decomposition while combining spatial, temporal, and socioeconomic features in an end-to-end framework. Evaluated on our POI-Graph dataset comprising 94.9 million co-visitation records across 92,486 brands and 48 US states, our method achieves significant improvements over state-of-the-art baselines: the R-squared value increases from 0.243 to 0.625 (a 157 percent improvement), with strong gains in ranking quality (32 percent improvement in NDCG at 10).

  • 6 authors
·
Jul 25