- SynCED-EnDe 2025: A Synthetic and Curated English - German Dataset for Critical Error Detection in Machine Translation Critical Error Detection (CED) in machine translation aims to determine whether a translation is safe to use or contains unacceptable deviations in meaning. While the WMT21 English-German CED dataset provided the first benchmark, it is limited in scale, label balance, domain coverage, and temporal freshness. We present SynCED-EnDe, a new resource consisting of 1,000 gold-labeled and 8,000 silver-labeled sentence pairs, balanced 50/50 between error and non-error cases. SynCED-EnDe draws from diverse 2024-2025 sources (StackExchange, GOV.UK) and introduces explicit error subclasses, structured trigger flags, and fine-grained auxiliary judgments (obviousness, severity, localization complexity, contextual dependency, adequacy deviation). These enrichments enable systematic analyses of error risk and intricacy beyond binary detection. The dataset is permanently hosted on GitHub and Hugging Face, accompanied by documentation, annotation guidelines, and baseline scripts. Benchmark experiments with XLM-R and related encoders show substantial performance gains over WMT21 due to balanced labels and refined annotations. We envision SynCED-EnDe as a community resource to advance safe deployment of MT in information retrieval and conversational assistants, particularly in emerging contexts such as wearable AI devices. 3 authors · Oct 1
- Keyword-Centric Prompting for One-Shot Event Detection with Self-Generated Rationale Enhancements Although the LLM-based in-context learning (ICL) paradigm has demonstrated considerable success across various natural language processing tasks, it encounters challenges in event detection. This is because LLMs lack an accurate understanding of event triggers and tend to make over-interpretation, which cannot be effectively corrected through in-context examples alone. In this paper, we focus on the most challenging one-shot setting and propose KeyCP++, a keyword-centric chain-of-thought prompting approach. KeyCP++ addresses the weaknesses of conventional ICL by automatically annotating the logical gaps between input text and detection results for the demonstrations. Specifically, to generate in-depth and meaningful rationale, KeyCP++ constructs a trigger discrimination prompting template. It incorporates the exemplary triggers (a.k.a keywords) into the prompt as the anchor to simply trigger profiling, let LLM propose candidate triggers, and justify each candidate. These propose-and-judge rationales help LLMs mitigate over-reliance on the keywords and promote detection rule learning. Extensive experiments demonstrate the effectiveness of our approach, showcasing significant advancements in one-shot event detection. 2 authors · Aug 10
- An Empirical Evaluation of LLMs for Solving Offensive Security Challenges Capture The Flag (CTF) challenges are puzzles related to computer security scenarios. With the advent of large language models (LLMs), more and more CTF participants are using LLMs to understand and solve the challenges. However, so far no work has evaluated the effectiveness of LLMs in solving CTF challenges with a fully automated workflow. We develop two CTF-solving workflows, human-in-the-loop (HITL) and fully-automated, to examine the LLMs' ability to solve a selected set of CTF challenges, prompted with information about the question. We collect human contestants' results on the same set of questions, and find that LLMs achieve higher success rate than an average human participant. This work provides a comprehensive evaluation of the capability of LLMs in solving real world CTF challenges, from real competition to fully automated workflow. Our results provide references for applying LLMs in cybersecurity education and pave the way for systematic evaluation of offensive cybersecurity capabilities in LLMs. 7 authors · Feb 18, 2024