new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 1

Named entity recognition for Serbian legal documents: Design, methodology and dataset development

Recent advancements in the field of natural language processing (NLP) and especially large language models (LLMs) and their numerous applications have brought research attention to design of different document processing tools and enhancements in the process of document archiving, search and retrieval. Domain of official, legal documents is especially interesting due to vast amount of data generated on the daily basis, as well as the significant community of interested practitioners (lawyers, law offices, administrative workers, state institutions and citizens). Providing efficient ways for automation of everyday work involving legal documents is therefore expected to have significant impact in different fields. In this work we present one LLM based solution for Named Entity Recognition (NER) in the case of legal documents written in Serbian language. It leverages on the pre-trained bidirectional encoder representations from transformers (BERT), which had been carefully adapted to the specific task of identifying and classifying specific data points from textual content. Besides novel dataset development for Serbian language (involving public court rulings), presented system design and applied methodology, the paper also discusses achieved performance metrics and their implications for objective assessment of the proposed solution. Performed cross-validation tests on the created manually labeled dataset with mean F_1 score of 0.96 and additional results on the examples of intentionally modified text inputs confirm applicability of the proposed system design and robustness of the developed NER solution.

  • 2 authors
·
Feb 14, 2025

Classification Benchmarks for Under-resourced Bengali Language based on Multichannel Convolutional-LSTM Network

Exponential growths of social media and micro-blogging sites not only provide platforms for empowering freedom of expressions and individual voices but also enables people to express anti-social behaviour like online harassment, cyberbullying, and hate speech. Numerous works have been proposed to utilize these data for social and anti-social behaviours analysis, document characterization, and sentiment analysis by predicting the contexts mostly for highly resourced languages such as English. However, there are languages that are under-resources, e.g., South Asian languages like Bengali, Tamil, Assamese, Telugu that lack of computational resources for the NLP tasks. In this paper, we provide several classification benchmarks for Bengali, an under-resourced language. We prepared three datasets of expressing hate, commonly used topics, and opinions for hate speech detection, document classification, and sentiment analysis, respectively. We built the largest Bengali word embedding models to date based on 250 million articles, which we call BengFastText. We perform three different experiments, covering document classification, sentiment analysis, and hate speech detection. We incorporate word embeddings into a Multichannel Convolutional-LSTM (MConv-LSTM) network for predicting different types of hate speech, document classification, and sentiment analysis. Experiments demonstrate that BengFastText can capture the semantics of words from respective contexts correctly. Evaluations against several baseline embedding models, e.g., Word2Vec and GloVe yield up to 92.30%, 82.25%, and 90.45% F1-scores in case of document classification, sentiment analysis, and hate speech detection, respectively during 5-fold cross-validation tests.

  • 4 authors
·
Apr 11, 2020

VeriCoder: Enhancing LLM-Based RTL Code Generation through Functional Correctness Validation

Recent advances in Large Language Models (LLMs) have sparked growing interest in applying them to Electronic Design Automation (EDA) tasks, particularly Register Transfer Level (RTL) code generation. While several RTL datasets have been introduced, most focus on syntactic validity rather than functional validation with tests, leading to training examples that compile but may not implement the intended behavior. We present VERICODER, a model for RTL code generation fine-tuned on a dataset validated for functional correctness. This fine-tuning dataset is constructed using a novel methodology that combines unit test generation with feedback-directed refinement. Given a natural language specification and an initial RTL design, we prompt a teacher model (GPT-4o-mini) to generate unit tests and iteratively revise the RTL design based on its simulation results using the generated tests. If necessary, the teacher model also updates the tests to ensure they comply with the natural language specification. As a result of this process, every example in our dataset is functionally validated, consisting of a natural language description, an RTL implementation, and passing tests. Fine-tuned on this dataset of over 125,000 examples, VERICODER achieves state-of-the-art metrics in functional correctness on VerilogEval and RTLLM, with relative gains of up to 71.7% and 27.4% respectively. An ablation study further shows that models trained on our functionally validated dataset outperform those trained on functionally non-validated datasets, underscoring the importance of high-quality datasets in RTL code generation.

  • 8 authors
·
Apr 22, 2025

TENET: Leveraging Tests Beyond Validation for Code Generation

Test-Driven Development (TDD) is a widely adopted software engineering practice that requires developers to create and execute tests alongside code implementation, ensuring that software behavior is continuously validated and refined. In the era of vibe coding, where developers increasingly delegate code writing to large language models (LLMs) by specifying high-level intentions, TDD becomes even more crucial, as test cases serve as executable specifications that explicitly define and verify intended functionality beyond what natural-language descriptions and code context can convey. While vibe coding under TDD is promising, there are three main challenges: (1) selecting a small yet effective test suite to improve the generation accuracy and control the execution workload, (2) retrieving context such as relevant code effectively, and (3) systematically using test feedback for effective code refinement. To address these challenges, we introduce TENET, an LLM agent for generating functions in complex real-world repositories under the TDD setting. TENET features three components: (1) a novel test harness mechanism that selects a concise test suite to maximize diversity of target usage scenarios; (2) a tailored agent toolset that performs efficient retrieval of relevant code with interactive debugging; and (3) a reflection-based refinement workflow that iteratively analyzes failures, replenishes context, and applies code refinement. TENET achieves 69.08% and 81.77% Pass@1 on RepoCod and RepoEval benchmarks, outperforming the best agentic baselines by 9.49 and 2.17 percentage points, respectively. In addition, this is the first study of test-driven code generation with repository-level context, examining how different aspects of test suites affect the performance of LLM agents under the TDD setting.

Deep Learning-Based Breast Cancer Detection in Mammography: A Multi-Center Validation Study in Thai Population

This study presents a deep learning system for breast cancer detection in mammography, developed using a modified EfficientNetV2 architecture with enhanced attention mechanisms. The model was trained on mammograms from a major Thai medical center and validated on three distinct datasets: an in-domain test set (9,421 cases), a biopsy-confirmed set (883 cases), and an out-of-domain generalizability set (761 cases) collected from two different hospitals. For cancer detection, the model achieved AUROCs of 0.89, 0.96, and 0.94 on the respective datasets. The system's lesion localization capability, evaluated using metrics including Lesion Localization Fraction (LLF) and Non-Lesion Localization Fraction (NLF), demonstrated robust performance in identifying suspicious regions. Clinical validation through concordance tests showed strong agreement with radiologists: 83.5% classification and 84.0% localization concordance for biopsy-confirmed cases, and 78.1% classification and 79.6% localization concordance for out-of-domain cases. Expert radiologists' acceptance rate also averaged 96.7% for biopsy-confirmed cases, and 89.3% for out-of-domain cases. The system achieved a System Usability Scale score of 74.17 for source hospital, and 69.20 for validation hospitals, indicating good clinical acceptance. These results demonstrate the model's effectiveness in assisting mammogram interpretation, with the potential to enhance breast cancer screening workflows in clinical practice.

  • 15 authors
·
May 29, 2025

AgroSense: An Integrated Deep Learning System for Crop Recommendation via Soil Image Analysis and Nutrient Profiling

Meeting the increasing global demand for food security and sustainable farming requires intelligent crop recommendation systems that operate in real time. Traditional soil analysis techniques are often slow, labor-intensive, and not suitable for on-field decision-making. To address these limitations, we introduce AgroSense, a deep-learning framework that integrates soil image classification and nutrient profiling to produce accurate and contextually relevant crop recommendations. AgroSense comprises two main components: a Soil Classification Module, which leverages ResNet-18, EfficientNet-B0, and Vision Transformer architectures to categorize soil types from images; and a Crop Recommendation Module, which employs a Multi-Layer Perceptron, XGBoost, LightGBM, and TabNet to analyze structured soil data, including nutrient levels, pH, and rainfall. We curated a multimodal dataset of 10,000 paired samples drawn from publicly available Kaggle repositories, approximately 50,000 soil images across seven classes, and 25,000 nutrient profiles for experimental evaluation. The fused model achieves 98.0% accuracy, with a precision of 97.8%, a recall of 97.7%, and an F1-score of 96.75%, while RMSE and MAE drop to 0.32 and 0.27, respectively. Ablation studies underscore the critical role of multimodal coupling, and statistical validation via t-tests and ANOVA confirms the significance of our improvements. AgroSense offers a practical, scalable solution for real-time decision support in precision agriculture and paves the way for future lightweight multimodal AI systems in resource-constrained environments.

  • 3 authors
·
Sep 1, 2025

SpiroLLM: Finetuning Pretrained LLMs to Understand Spirogram Time Series with Clinical Validation in COPD Reporting

Chronic Obstructive Pulmonary Disease (COPD), a major chronic respiratory disease with persistent airflow limitation, is a leading global cause of disability and mortality. Respiratory spirogram time series, routinely collected during pulmonary function tests (PFTs), play a critical role in the early detection of repsiratory diseases and in monitoring lung function over time. However, most current AI models for COPD diagnosis are limited to outputting classification results without providing a rationale for their diagnostic process, while current Large Language Models (LLMs) cannot understand spirograms yet, which severely limits their clinical trust and adoption. To tackle this challenge, we leverage a cohort of 234,028 individuals from the UK Biobank (UKB) to propose SpiroLLM, the first multimodal large language model that can understand spirogram. The model extracts morphological features from respiratory curves via a SpiroEncoder and aligns them with PFT numerical values in a unified latent space using a SpiroProjector, ultimately empowering a large language model to generate a comprehensive diagnostic report. Experimental results confirm that SpiroLLM achieved a diagnostic AUROC of 0.8980 (95% CI: 0.8820-0.9132). In a robustness test with missing core data, it maintained a 100% valid response rate, far surpassing the 13.4% of a text-only model and showcasing the superiority of its multimodal design. This work demonstrates the substantial potential of deeply fusing physiological signals with large language models, establishing a new paradigm for the next generation of interpretable and reliable clinical decision support tools.

  • 8 authors
·
Jul 21, 2025

Do uHear? Validation of uHear App for Preliminary Screening of Hearing Ability in Soundscape Studies

Studies involving soundscape perception often exclude participants with hearing loss to prevent impaired perception from affecting experimental results. Participants are typically screened with pure tone audiometry, the "gold standard" for identifying and quantifying hearing loss at specific frequencies, and excluded if a study-dependent threshold is not met. However, procuring professional audiometric equipment for soundscape studies may be cost-ineffective, and manually performing audiometric tests is labour-intensive. Moreover, testing requirements for soundscape studies may not require sensitivities and specificities as high as that in a medical diagnosis setting. Hence, in this study, we investigate the effectiveness of the uHear app, an iOS application, as an affordable and automatic alternative to a conventional audiometer in screening participants for hearing loss for the purpose of soundscape studies or listening tests in general. Based on audiometric comparisons with the audiometer of 163 participants, the uHear app was found to have high precision (98.04%) when using the World Health Organization (WHO) grading scheme for assessing normal hearing. Precision is further improved (98.69%) when all frequencies assessed with the uHear app is considered in the grading, which lends further support to this cost-effective, automated alternative to screen for normal hearing.

  • 6 authors
·
Jul 16, 2022

Use Property-Based Testing to Bridge LLM Code Generation and Validation

Large Language Models (LLMs) excel at code generation, but ensuring their outputs to be functionally correct, especially in complex programming tasks, is a persistent challenge. While traditional Test-Driven Development (TDD) offers a path for code refinement, its efficacy with LLMs is often undermined by the scarcity of high-quality test cases or the pitfalls of automated test generation, including biased tests or inaccurate output predictions that can misdirect the correction process. This paper introduces Property-Generated Solver, a novel framework that leverages Property-Based Testing (PBT) to validate high-level program properties or invariants, instead of relying on specific input-output examples. These properties are often simpler to define and verify than directly predicting exhaustive test oracles, breaking the "cycle of self-deception" where tests might share flaws with the code they are meant to validate. Property-Generated Solver employs two collaborative LLM-based agents: a Generator dedicated to code generation and iterative refinement, and a Tester that manages the PBT life-cycle and formulate semantically rich feedback from property violations. The resulting comprehensive and actionable feedback then guides the Generator in its refinement efforts. By establishing PBT as the core validation engine within this iterative, closed-loop paradigm, Property-Generated Solver provides a robust mechanism for steering LLMs towards more correct and generalizable code. Extensive experimental results on multiple code generation benchmarks demonstrate that Property-Generated Solver achieves substantial pass@1 improvements, ranging from 23.1% to 37.3% relative gains over established TDD methods.

  • 6 authors
·
Jun 23, 2025 1

LLM Context Conditioning and PWP Prompting for Multimodal Validation of Chemical Formulas

Identifying subtle technical errors within complex scientific and technical documents, especially those requiring multimodal interpretation (e.g., formulas in images), presents a significant hurdle for Large Language Models (LLMs) whose inherent error-correction tendencies can mask inaccuracies. This exploratory proof-of-concept (PoC) study investigates structured LLM context conditioning, informed by Persistent Workflow Prompting (PWP) principles, as a methodological strategy to modulate this LLM behavior at inference time. The approach is designed to enhance the reliability of readily available, general-purpose LLMs (specifically Gemini 2.5 Pro and ChatGPT Plus o3) for precise validation tasks, crucially relying only on their standard chat interfaces without API access or model modifications. To explore this methodology, we focused on validating chemical formulas within a single, complex test paper with known textual and image-based errors. Several prompting strategies were evaluated: while basic prompts proved unreliable, an approach adapting PWP structures to rigorously condition the LLM's analytical mindset appeared to improve textual error identification with both models. Notably, this method also guided Gemini 2.5 Pro to repeatedly identify a subtle image-based formula error previously overlooked during manual review, a task where ChatGPT Plus o3 failed in our tests. These preliminary findings highlight specific LLM operational modes that impede detail-oriented validation and suggest that PWP-informed context conditioning offers a promising and highly accessible technique for developing more robust LLM-driven analytical workflows, particularly for tasks requiring meticulous error detection in scientific and technical documents. Extensive validation beyond this limited PoC is necessary to ascertain broader applicability.

  • 1 authors
·
May 18, 2025 2

Evaluating Protein Transfer Learning with TAPE

Protein modeling is an increasingly popular area of machine learning research. Semi-supervised learning has emerged as an important paradigm in protein modeling due to the high cost of acquiring supervised protein labels, but the current literature is fragmented when it comes to datasets and standardized evaluation techniques. To facilitate progress in this field, we introduce the Tasks Assessing Protein Embeddings (TAPE), a set of five biologically relevant semi-supervised learning tasks spread across different domains of protein biology. We curate tasks into specific training, validation, and test splits to ensure that each task tests biologically relevant generalization that transfers to real-life scenarios. We benchmark a range of approaches to semi-supervised protein representation learning, which span recent work as well as canonical sequence learning techniques. We find that self-supervised pretraining is helpful for almost all models on all tasks, more than doubling performance in some cases. Despite this increase, in several cases features learned by self-supervised pretraining still lag behind features extracted by state-of-the-art non-neural techniques. This gap in performance suggests a huge opportunity for innovative architecture design and improved modeling paradigms that better capture the signal in biological sequences. TAPE will help the machine learning community focus effort on scientifically relevant problems. Toward this end, all data and code used to run these experiments are available at https://github.com/songlab-cal/tape.

  • 8 authors
·
Jun 19, 2019

CodeDPO: Aligning Code Models with Self Generated and Verified Source Code

Code generation models have shown significant potential for programming tasks. However, existing training methods like supervised fine-tuning face key limitations: they do not effectively teach models to prioritize correct over incorrect solutions in ambiguous situations, nor do they effectively optimize the runtime efficiency of the generated code. To address these challenges, we propose CodeDPO, a framework that integrates preference learning into code generation to improve two key code preference factors: code correctness and efficiency. CodeDPO employs a novel dataset construction method, utilizing a self-generation-and-validation mechanism that simultaneously generates and evaluates code and test cases. The underlying assumption is that test cases executable by multiple code snippets provide more reliable validation, and code that passes more tests is more likely to be correct. Through this self-validation process, our PageRank-inspired algorithm iteratively updates the ranking score of each code snippet, ultimately creating a code preference optimization dataset based on correctness and efficiency. CodeDPO is flexible and scalable, generating diverse preference optimization data without depending on external resources. Through comprehensive evaluations of five widely used benchmarks, CodeDPO demonstrates significant improvements in correctness and efficiency compared to existing methods. Our experiments prove that CodeDPO enhances the capabilities of LLMs in code generation and provides a robust foundation for conducting code preference optimization in more complex and challenging real-world scenarios.

  • 8 authors
·
Oct 7, 2024

The Application of Artificial Neural Network Model to Predicting the Acid Mine Drainage from Long-Term Lab Scale Kinetic Test

Acid mine drainage (AMD) is one of the common environmental problems in the coal mining industry that was formed by the oxidation of sulfide minerals in the overburden or waste rock. The prediction of acid generation through AMD is important to do in overburden management and planning the post-mining land use. One of the methods used to predict AMD is a lab-scale kinetic test to determine the rate of acid formation over time using representative samples in the field. However, this test requires a long-time procedure and large amount of chemical reagents lead to inefficient cost. On the other hand, there is potential for machine learning to learn the pattern behind the lab-scale kinetic test data. This study describes an approach to use artificial neural network (ANN) modeling to predict the result from lab-scale kinetic tests. Various ANN model is used based on 83 weeks experiments of lab-scale kinetic tests with 100\% potential acid-forming rock. The model approaches the monitoring of pH, ORP, conductivity, TDS, sulfate, and heavy metals (Fe and Mn). The overall Nash-Sutcliffe Efficiency (NSE) obtained in this study was 0.99 on training and validation data, indicating a strong correlation and accurate prediction compared to the actual lab-scale kinetic tests data. This show the ANN ability to learn patterns, trends, and seasonality from past data for accurate forecasting, thereby highlighting its significant contribution to solving AMD problems. This research is also expected to establish the foundation for a new approach to predict AMD, with time efficient, accurate, and cost-effectiveness in future applications.

  • 5 authors
·
Sep 1, 2024

SWE-fficiency: Can Language Models Optimize Real-World Repositories on Real Workloads?

Optimizing the performance of large-scale software repositories demands expertise in code reasoning and software engineering (SWE) to reduce runtime while preserving program correctness. However, most benchmarks emphasize what to fix rather than how to fix code. We introduce SWE-fficiency, a benchmark for evaluating repository-level performance optimization on real workloads. Our suite contains 498 tasks across nine widely used data-science, machine-learning, and HPC repositories (e.g., numpy, pandas, scipy): given a complete codebase and a slow workload, an agent must investigate code semantics, localize bottlenecks and relevant tests, and produce a patch that matches or exceeds expert speedup while passing the same unit tests. To enable this how-to-fix evaluation, our automated pipeline scrapes GitHub pull requests for performance-improving edits, combining keyword filtering, static analysis, coverage tooling, and execution validation to both confirm expert speedup baselines and identify relevant repository unit tests. Empirical evaluation of state-of-the-art agents reveals significant underperformance. On average, agents achieve less than 0.15x the expert speedup: agents struggle in localizing optimization opportunities, reasoning about execution across functions, and maintaining correctness in proposed edits. We release the benchmark and accompanying data pipeline to facilitate research on automated performance engineering and long-horizon software reasoning.

  • 8 authors
·
Nov 8, 2025 2

ECOSoundSet: a finely annotated dataset for the automated acoustic identification of Orthoptera and Cicadidae in North, Central and temperate Western Europe

Currently available tools for the automated acoustic recognition of European insects in natural soundscapes are limited in scope. Large and ecologically heterogeneous acoustic datasets are currently needed for these algorithms to cross-contextually recognize the subtle and complex acoustic signatures produced by each species, thus making the availability of such datasets a key requisite for their development. Here we present ECOSoundSet (European Cicadidae and Orthoptera Sound dataSet), a dataset containing 10,653 recordings of 200 orthopteran and 24 cicada species (217 and 26 respective taxa when including subspecies) present in North, Central, and temperate Western Europe (Andorra, Belgium, Denmark, mainland France and Corsica, Germany, Ireland, Luxembourg, Monaco, Netherlands, United Kingdom, Switzerland), collected partly through targeted fieldwork in South France and Catalonia and partly through contributions from various European entomologists. The dataset is composed of a combination of coarsely labeled recordings, for which we can only infer the presence, at some point, of their target species (weak labeling), and finely annotated recordings, for which we know the specific time and frequency range of each insect sound present in the recording (strong labeling). We also provide a train/validation/test split of the strongly labeled recordings, with respective approximate proportions of 0.8, 0.1 and 0.1, in order to facilitate their incorporation in the training and evaluation of deep learning algorithms. This dataset could serve as a meaningful complement to recordings already available online for the training of deep learning algorithms for the acoustic classification of orthopterans and cicadas in North, Central, and temperate Western Europe.

  • 26 authors
·
Apr 29, 2025

Hard-Attention Gates with Gradient Routing for Endoscopic Image Computing

To address overfitting and enhance model generalization in gastroenterological polyp size assessment, our study introduces Feature-Selection Gates (FSG) or Hard-Attention Gates (HAG) alongside Gradient Routing (GR) for dynamic feature selection. This technique aims to boost Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) by promoting sparse connectivity, thereby reducing overfitting and enhancing generalization. HAG achieves this through sparsification with learnable weights, serving as a regularization strategy. GR further refines this process by optimizing HAG parameters via dual forward passes, independently from the main model, to improve feature re-weighting. Our evaluation spanned multiple datasets, including CIFAR-100 for a broad impact assessment and specialized endoscopic datasets (REAL-Colon, Misawa, and SUN) focusing on polyp size estimation, covering over 200 polyps in more than 370,000 frames. The findings indicate that our HAG-enhanced networks substantially enhance performance in both binary and triclass classification tasks related to polyp sizing. Specifically, CNNs experienced an F1 Score improvement to 87.8% in binary classification, while in triclass classification, the ViT-T model reached an F1 Score of 76.5%, outperforming traditional CNNs and ViT-T models. To facilitate further research, we are releasing our codebase, which includes implementations for CNNs, multistream CNNs, ViT, and HAG-augmented variants. This resource aims to standardize the use of endoscopic datasets, providing public training-validation-testing splits for reliable and comparable research in gastroenterological polyp size estimation. The codebase is available at github.com/cosmoimd/feature-selection-gates.

  • 4 authors
·
Jul 5, 2024 1

The Open Catalyst 2020 (OC20) Dataset and Community Challenges

Catalyst discovery and optimization is key to solving many societal and energy challenges including solar fuels synthesis, long-term energy storage, and renewable fertilizer production. Despite considerable effort by the catalysis community to apply machine learning models to the computational catalyst discovery process, it remains an open challenge to build models that can generalize across both elemental compositions of surfaces and adsorbate identity/configurations, perhaps because datasets have been smaller in catalysis than related fields. To address this we developed the OC20 dataset, consisting of 1,281,040 Density Functional Theory (DFT) relaxations (~264,890,000 single point evaluations) across a wide swath of materials, surfaces, and adsorbates (nitrogen, carbon, and oxygen chemistries). We supplemented this dataset with randomly perturbed structures, short timescale molecular dynamics, and electronic structure analyses. The dataset comprises three central tasks indicative of day-to-day catalyst modeling and comes with pre-defined train/validation/test splits to facilitate direct comparisons with future model development efforts. We applied three state-of-the-art graph neural network models (CGCNN, SchNet, Dimenet++) to each of these tasks as baseline demonstrations for the community to build on. In almost every task, no upper limit on model size was identified, suggesting that even larger models are likely to improve on initial results. The dataset and baseline models are both provided as open resources, as well as a public leader board to encourage community contributions to solve these important tasks.

  • 17 authors
·
Oct 19, 2020

Crafting Distribution Shifts for Validation and Training in Single Source Domain Generalization

Single-source domain generalization attempts to learn a model on a source domain and deploy it to unseen target domains. Limiting access only to source domain data imposes two key challenges - how to train a model that can generalize and how to verify that it does. The standard practice of validation on the training distribution does not accurately reflect the model's generalization ability, while validation on the test distribution is a malpractice to avoid. In this work, we construct an independent validation set by transforming source domain images with a comprehensive list of augmentations, covering a broad spectrum of potential distribution shifts in target domains. We demonstrate a high correlation between validation and test performance for multiple methods and across various datasets. The proposed validation achieves a relative accuracy improvement over the standard validation equal to 15.4% or 1.6% when used for method selection or learning rate tuning, respectively. Furthermore, we introduce a novel family of methods that increase the shape bias through enhanced edge maps. To benefit from the augmentations during training and preserve the independence of the validation set, a k-fold validation process is designed to separate the augmentation types used in training and validation. The method that achieves the best performance on the augmented validation is selected from the proposed family. It achieves state-of-the-art performance on various standard benchmarks. Code at: https://github.com/NikosEfth/crafting-shifts

  • 3 authors
·
Sep 29, 2024

Humanity's Last Code Exam: Can Advanced LLMs Conquer Human's Hardest Code Competition?

Code generation is a core capability of large language models (LLMs), yet mainstream benchmarks (e.g., APPs and LiveCodeBench) contain questions with medium-level difficulty and pose no challenge to advanced LLMs. To better reflected the advanced reasoning and code generation ability, We introduce Humanity's Last Code Exam (HLCE), comprising 235 most challenging problems from the International Collegiate Programming Contest (ICPC World Finals) and the International Olympiad in Informatics (IOI) spanning 2010 - 2024. As part of HLCE, we design a harmonized online-offline sandbox that guarantees fully reproducible evaluation. Through our comprehensive evaluation, we observe that even the strongest reasoning LLMs: o4-mini(high) and Gemini-2.5 Pro, achieve pass@1 rates of only 15.9% and 11.4%, respectively. Meanwhile, we propose a novel "self-recognition" task to measure LLMs' awareness of their own capabilities. Results indicate that LLMs' self-recognition abilities are not proportionally correlated with their code generation performance. Finally, our empirical validation of test-time scaling laws reveals that current advanced LLMs have substantial room for improvement on complex programming tasks. We expect HLCE to become a milestone challenge for code generation and to catalyze advances in high-performance reasoning and human-AI collaborative programming. Our code and dataset are also public available(https://github.com/Humanity-s-Last-Code-Exam/HLCE).

  • 10 authors
·
Jun 15, 2025 1

ReXGroundingCT: A 3D Chest CT Dataset for Segmentation of Findings from Free-Text Reports

We present ReXGroundingCT, the first publicly available dataset to link free-text radiology findings with pixel-level segmentations in 3D chest CT scans that is manually annotated. While prior datasets have relied on structured labels or predefined categories, ReXGroundingCT captures the full expressiveness of clinical language represented in free text and grounds it to spatially localized 3D segmentation annotations in volumetric imaging. This addresses a critical gap in medical AI: the ability to connect complex, descriptive text, such as "3 mm nodule in the left lower lobe", to its precise anatomical location in three-dimensional space, a capability essential for grounded radiology report generation systems. The dataset comprises 3,142 non-contrast chest CT scans paired with standardized radiology reports from the CT-RATE dataset. Using a systematic three-stage pipeline, GPT-4 was used to extract positive lung and pleural findings, which were then manually segmented by expert annotators. A total of 8,028 findings across 16,301 entities were annotated, with quality control performed by board-certified radiologists. Approximately 79% of findings are focal abnormalities, while 21% are non-focal. The training set includes up to three representative segmentations per finding, while the validation and test sets contain exhaustive labels for each finding entity. ReXGroundingCT establishes a new benchmark for developing and evaluating sentence-level grounding and free-text medical segmentation models in chest CT. The dataset can be accessed at https://huggingface.co/datasets/rajpurkarlab/ReXGroundingCT.

  • 23 authors
·
Jul 29, 2025

Facilitating Pornographic Text Detection for Open-Domain Dialogue Systems via Knowledge Distillation of Large Language Models

Pornographic content occurring in human-machine interaction dialogues can cause severe side effects for users in open-domain dialogue systems. However, research on detecting pornographic language within human-machine interaction dialogues is an important subject that is rarely studied. To advance in this direction, we introduce CensorChat, a dialogue monitoring dataset aimed at detecting whether the dialogue session contains pornographic content. To this end, we collect real-life human-machine interaction dialogues in the wild and break them down into single utterances and single-turn dialogues, with the last utterance spoken by the chatbot. We propose utilizing knowledge distillation of large language models to annotate the dataset. Specifically, first, the raw dataset is annotated by four open-source large language models, with the majority vote determining the label. Second, we use ChatGPT to update the empty label from the first step. Third, to ensure the quality of the validation and test sets, we utilize GPT-4 for label calibration. If the current label does not match the one generated by GPT-4, we employ a self-criticism strategy to verify its correctness. Finally, to facilitate the detection of pornographic text, we develop a series of text classifiers using a pseudo-labeled dataset. Detailed data analysis demonstrates that leveraging knowledge distillation techniques with large language models provides a practical and cost-efficient method for developing pornographic text detectors.

  • 5 authors
·
Mar 19, 2024

MMLU-CF: A Contamination-free Multi-task Language Understanding Benchmark

Multiple-choice question (MCQ) datasets like Massive Multitask Language Understanding (MMLU) are widely used to evaluate the commonsense, understanding, and problem-solving abilities of large language models (LLMs). However, the open-source nature of these benchmarks and the broad sources of training data for LLMs have inevitably led to benchmark contamination, resulting in unreliable evaluation results. To alleviate this issue, we propose a contamination-free and more challenging MCQ benchmark called MMLU-CF. This benchmark reassesses LLMs' understanding of world knowledge by averting both unintentional and malicious data leakage. To avoid unintentional data leakage, we source data from a broader domain and design three decontamination rules. To prevent malicious data leakage, we divide the benchmark into validation and test sets with similar difficulty and subject distributions. The test set remains closed-source to ensure reliable results, while the validation set is publicly available to promote transparency and facilitate independent verification. Our evaluation of mainstream LLMs reveals that the powerful GPT-4o achieves merely a 5-shot score of 73.4% and a 0-shot score of 71.9% on the test set, which indicates the effectiveness of our approach in creating a more rigorous and contamination-free evaluation standard. The GitHub repository is available at https://github.com/microsoft/MMLU-CF and the dataset refers to https://huggingface.co/datasets/microsoft/MMLU-CF.

  • 11 authors
·
Dec 19, 2024

L3Cube-MahaEmotions: A Marathi Emotion Recognition Dataset with Synthetic Annotations using CoTR prompting and Large Language Models

Emotion recognition in low-resource languages like Marathi remains challenging due to limited annotated data. We present L3Cube-MahaEmotions, a high-quality Marathi emotion recognition dataset with 11 fine-grained emotion labels. The training data is synthetically annotated using large language models (LLMs), while the validation and test sets are manually labeled to serve as a reliable gold-standard benchmark. Building on the MahaSent dataset, we apply the Chain-of-Translation (CoTR) prompting technique, where Marathi sentences are translated into English and emotion labeled via a single prompt. GPT-4 and Llama3-405B were evaluated, with GPT-4 selected for training data annotation due to superior label quality. We evaluate model performance using standard metrics and explore label aggregation strategies (e.g., Union, Intersection). While GPT-4 predictions outperform fine-tuned BERT models, BERT-based models trained on synthetic labels fail to surpass GPT-4. This highlights both the importance of high-quality human-labeled data and the inherent complexity of emotion recognition. An important finding of this work is that generic LLMs like GPT-4 and Llama3-405B generalize better than fine-tuned BERT for complex low-resource emotion recognition tasks. The dataset and model are shared publicly at https://github.com/l3cube-pune/MarathiNLP

  • 2 authors
·
Jun 1, 2025

Domain penalisation for improved Out-of-Distribution Generalisation

In the field of object detection, domain generalisation (DG) aims to ensure robust performance across diverse and unseen target domains by learning the robust domain-invariant features corresponding to the objects of interest across multiple source domains. While there are many approaches established for performing DG for the task of classification, there has been a very little focus on object detection. In this paper, we propose a domain penalisation (DP) framework for the task of object detection, where the data is assumed to be sampled from multiple source domains and tested on completely unseen test domains. We assign penalisation weights to each domain, with the values updated based on the detection networks performance on the respective source domains. By prioritising the domains that needs more attention, our approach effectively balances the training process. We evaluate our solution on the GWHD 2021 dataset, a component of the WiLDS benchmark and we compare against ERM and GroupDRO as these are primarily loss function based. Our extensive experimental results reveals that the proposed approach improves the accuracy by 0.3 percent and 0.5 percent on validation and test out-of-distribution (OOD) sets, respectively for FasterRCNN. We also compare the performance of our approach on FCOS detector and show that our approach improves the baseline OOD performance over the existing approaches by 1.3 percent and 1.4 percent on validation and test sets, respectively. This study underscores the potential of performance based domain penalisation in enhancing the generalisation ability of object detection models across diverse environments.

  • 6 authors
·
Aug 3, 2024

3DMOTFormer: Graph Transformer for Online 3D Multi-Object Tracking

Tracking 3D objects accurately and consistently is crucial for autonomous vehicles, enabling more reliable downstream tasks such as trajectory prediction and motion planning. Based on the substantial progress in object detection in recent years, the tracking-by-detection paradigm has become a popular choice due to its simplicity and efficiency. State-of-the-art 3D multi-object tracking (MOT) approaches typically rely on non-learned model-based algorithms such as Kalman Filter but require many manually tuned parameters. On the other hand, learning-based approaches face the problem of adapting the training to the online setting, leading to inevitable distribution mismatch between training and inference as well as suboptimal performance. In this work, we propose 3DMOTFormer, a learned geometry-based 3D MOT framework building upon the transformer architecture. We use an Edge-Augmented Graph Transformer to reason on the track-detection bipartite graph frame-by-frame and conduct data association via edge classification. To reduce the distribution mismatch between training and inference, we propose a novel online training strategy with an autoregressive and recurrent forward pass as well as sequential batch optimization. Using CenterPoint detections, our approach achieves 71.2% and 68.2% AMOTA on the nuScenes validation and test split, respectively. In addition, a trained 3DMOTFormer model generalizes well across different object detectors. Code is available at: https://github.com/dsx0511/3DMOTFormer.

  • 5 authors
·
Aug 12, 2023

Quo Vadis: Hybrid Machine Learning Meta-Model based on Contextual and Behavioral Malware Representations

We propose a hybrid machine learning architecture that simultaneously employs multiple deep learning models analyzing contextual and behavioral characteristics of Windows portable executable, producing a final prediction based on a decision from the meta-model. The detection heuristic in contemporary machine learning Windows malware classifiers is typically based on the static properties of the sample since dynamic analysis through virtualization is challenging for vast quantities of samples. To surpass this limitation, we employ a Windows kernel emulation that allows the acquisition of behavioral patterns across large corpora with minimal temporal and computational costs. We partner with a security vendor for a collection of more than 100k int-the-wild samples that resemble the contemporary threat landscape, containing raw PE files and filepaths of applications at the moment of execution. The acquired dataset is at least ten folds larger than reported in related works on behavioral malware analysis. Files in the training dataset are labeled by a professional threat intelligence team, utilizing manual and automated reverse engineering tools. We estimate the hybrid classifier's operational utility by collecting an out-of-sample test set three months later from the acquisition of the training set. We report an improved detection rate, above the capabilities of the current state-of-the-art model, especially under low false-positive requirements. Additionally, we uncover a meta-model's ability to identify malicious activity in validation and test sets even if none of the individual models express enough confidence to mark the sample as malevolent. We conclude that the meta-model can learn patterns typical to malicious samples from representation combinations produced by different analysis techniques. We publicly release pre-trained models and anonymized dataset of emulation reports.

  • 1 authors
·
Aug 20, 2022

Vision-Braille: An End-to-End Tool for Chinese Braille Image-to-Text Translation

Visually impaired people are a large group who can only use braille for reading and writing. However, the lack of special educational resources is the bottleneck for educating them. Educational equity is a reflection of the level of social civilization, cultural equality, and individual dignity. Facilitating and improving lifelong learning channels for the visually impaired is of great significance. Their written braille homework or exam papers cannot be understood by sighted teachers, because of the lack of a highly accurate braille translation system, especially in Chinese which has tone marks. braille writers often omit tone marks to save space, leading to confusion when braille with the same consonants and vowels is translated into Chinese. Previous algorithms were insufficient in extracting contextual information, resulting in low accuracy of braille translations into Chinese. This project informatively fine-tuned the mT5 model with an Encoder-decoder architecture for braille to Chinese character conversion. This research created a training set of braille and corresponding Chinese text from the Leipzig Corpora. This project significantly reduced the confusion in braille, achieving 62.4 and 62.3 BLEU scores in the validation and test sets, with a curriculum learning fine-tuning method. By incorporating the braille recognition algorithm, this project is the first publicly available braille translation system and can benefit lots of visually impaired students and families who are preparing for the Chinese College Test and help to propel their college dreams in the future. There is a demo on our homepage\url{https://vision-braille.com/}.

  • 3 authors
·
Jul 8, 2024

Time Travel in LLMs: Tracing Data Contamination in Large Language Models

Data contamination, i.e., the presence of test data from downstream tasks in the training data of large language models (LLMs), is a potential major issue in measuring LLMs' real effectiveness on other tasks. We propose a straightforward yet effective method for identifying data contamination within LLMs. At its core, our approach starts by identifying potential contamination at the instance level; using this information, our approach then assesses wider contamination at the partition level. To estimate contamination of individual instances, we employ "guided instruction:" a prompt consisting of the dataset name, partition type, and the random-length initial segment of a reference instance, asking the LLM to complete it. An instance is flagged as contaminated if the LLM's output either exactly or nearly matches the latter segment of the reference. To understand if an entire partition is contaminated, we propose two ideas. The first idea marks a dataset partition as contaminated if the average overlap score with the reference instances (as measured by ROUGE-L or BLEURT) is statistically significantly better with the completions from guided instruction compared to a "general instruction" that does not include the dataset and partition name. The second idea marks a dataset partition as contaminated if a classifier based on GPT-4 with few-shot in-context learning prompt marks multiple generated completions as exact/near-exact matches of the corresponding reference instances. Our best method achieves an accuracy between 92% and 100% in detecting if an LLM is contaminated with seven datasets, containing train and test/validation partitions, when contrasted with manual evaluation by human experts. Further, our findings indicate that GPT-4 is contaminated with AG News, WNLI, and XSum datasets.

  • 2 authors
·
Aug 16, 2023

AIM 2024 Sparse Neural Rendering Challenge: Dataset and Benchmark

Recent developments in differentiable and neural rendering have made impressive breakthroughs in a variety of 2D and 3D tasks, e.g. novel view synthesis, 3D reconstruction. Typically, differentiable rendering relies on a dense viewpoint coverage of the scene, such that the geometry can be disambiguated from appearance observations alone. Several challenges arise when only a few input views are available, often referred to as sparse or few-shot neural rendering. As this is an underconstrained problem, most existing approaches introduce the use of regularisation, together with a diversity of learnt and hand-crafted priors. A recurring problem in sparse rendering literature is the lack of an homogeneous, up-to-date, dataset and evaluation protocol. While high-resolution datasets are standard in dense reconstruction literature, sparse rendering methods often evaluate with low-resolution images. Additionally, data splits are inconsistent across different manuscripts, and testing ground-truth images are often publicly available, which may lead to over-fitting. In this work, we propose the Sparse Rendering (SpaRe) dataset and benchmark. We introduce a new dataset that follows the setup of the DTU MVS dataset. The dataset is composed of 97 new scenes based on synthetic, high-quality assets. Each scene has up to 64 camera views and 7 lighting configurations, rendered at 1600x1200 resolution. We release a training split of 82 scenes to foster generalizable approaches, and provide an online evaluation platform for the validation and test sets, whose ground-truth images remain hidden. We propose two different sparse configurations (3 and 9 input images respectively). This provides a powerful and convenient tool for reproducible evaluation, and enable researchers easy access to a public leaderboard with the state-of-the-art performance scores. Available at: https://sparebenchmark.github.io/

  • 6 authors
·
Sep 23, 2024 2

PathMMU: A Massive Multimodal Expert-Level Benchmark for Understanding and Reasoning in Pathology

The emergence of large multimodal models has unlocked remarkable potential in AI, particularly in pathology. However, the lack of specialized, high-quality benchmark impeded their development and precise evaluation. To address this, we introduce PathMMU, the largest and highest-quality expert-validated pathology benchmark for LMMs. It comprises 33,573 multimodal multi-choice questions and 21,599 images from various sources, and an explanation for the correct answer accompanies each question. The construction of PathMMU capitalizes on the robust capabilities of GPT-4V, utilizing approximately 30,000 gathered image-caption pairs to generate Q\&As. Significantly, to maximize PathMMU's authority, we invite six pathologists to scrutinize each question under strict standards in PathMMU's validation and test sets, while simultaneously setting an expert-level performance benchmark for PathMMU. We conduct extensive evaluations, including zero-shot assessments of 14 open-sourced and three closed-sourced LMMs and their robustness to image corruption. We also fine-tune representative LMMs to assess their adaptability to PathMMU. The empirical findings indicate that advanced LMMs struggle with the challenging PathMMU benchmark, with the top-performing LMM, GPT-4V, achieving only a 51.7\% zero-shot performance, significantly lower than the 71.4\% demonstrated by human pathologists. After fine-tuning, even open-sourced LMMs can surpass GPT-4V with a performance of over 60\%, but still fall short of the expertise shown by pathologists. We hope that the PathMMU will offer valuable insights and foster the development of more specialized, next-generation LLMs for pathology.

  • 13 authors
·
Jan 29, 2024

ReXVQA: A Large-scale Visual Question Answering Benchmark for Generalist Chest X-ray Understanding

We present ReXVQA, the largest and most comprehensive benchmark for visual question answering (VQA) in chest radiology, comprising approximately 696,000 questions paired with 160,000 chest X-rays studies across training, validation, and test sets. Unlike prior efforts that rely heavily on template based queries, ReXVQA introduces a diverse and clinically authentic task suite reflecting five core radiological reasoning skills: presence assessment, location analysis, negation detection, differential diagnosis, and geometric reasoning. We evaluate eight state-of-the-art multimodal large language models, including MedGemma-4B-it, Qwen2.5-VL, Janus-Pro-7B, and Eagle2-9B. The best-performing model (MedGemma) achieves 83.24% overall accuracy. To bridge the gap between AI performance and clinical expertise, we conducted a comprehensive human reader study involving 3 radiology residents on 200 randomly sampled cases. Our evaluation demonstrates that MedGemma achieved superior performance (83.84% accuracy) compared to human readers (best radiology resident: 77.27%), representing a significant milestone where AI performance exceeds expert human evaluation on chest X-ray interpretation. The reader study reveals distinct performance patterns between AI models and human experts, with strong inter-reader agreement among radiologists while showing more variable agreement patterns between human readers and AI models. ReXVQA establishes a new standard for evaluating generalist radiological AI systems, offering public leaderboards, fine-grained evaluation splits, structured explanations, and category-level breakdowns. This benchmark lays the foundation for next-generation AI systems capable of mimicking expert-level clinical reasoning beyond narrow pathology classification. Our dataset will be open-sourced at https://huggingface.co/datasets/rajpurkarlab/ReXVQA

  • 8 authors
·
Jun 4, 2025

Susu Box or Piggy Bank: Assessing Cultural Commonsense Knowledge between Ghana and the U.S

Recent work has highlighted the culturally-contingent nature of commonsense knowledge. We introduce AMAMMER{epsilon}, a test set of 525 multiple-choice questions designed to evaluate the commonsense knowledge of English LLMs, relative to the cultural contexts of Ghana and the United States. To create AMAMMER{epsilon}, we select a set of multiple-choice questions (MCQs) from existing commonsense datasets and rewrite them in a multi-stage process involving surveys of Ghanaian and U.S. participants. In three rounds of surveys, participants from both pools are solicited to (1) write correct and incorrect answer choices, (2) rate individual answer choices on a 5-point Likert scale, and (3) select the best answer choice from the newly-constructed MCQ items, in a final validation step. By engaging participants at multiple stages, our procedure ensures that participant perspectives are incorporated both in the creation and validation of test items, resulting in high levels of agreement within each pool. We evaluate several off-the-shelf English LLMs on AMAMMER{epsilon}. Uniformly, models prefer answers choices that align with the preferences of U.S. annotators over Ghanaian annotators. Additionally, when test items specify a cultural context (Ghana or the U.S.), models exhibit some ability to adapt, but performance is consistently better in U.S. contexts than Ghanaian. As large resources are devoted to the advancement of English LLMs, our findings underscore the need for culturally adaptable models and evaluations to meet the needs of diverse English-speaking populations around the world.

  • 3 authors
·
Oct 21, 2024

R2C2-Coder: Enhancing and Benchmarking Real-world Repository-level Code Completion Abilities of Code Large Language Models

Code completion models have made significant progress in recent years. Recently, repository-level code completion has drawn more attention in modern software development, and several baseline methods and benchmarks have been proposed. However, existing repository-level code completion methods often fall short of fully using the extensive context of a project repository, such as the intricacies of relevant files and class hierarchies. Besides, the existing benchmarks usually focus on limited code completion scenarios, which cannot reflect the repository-level code completion abilities well of existing methods. To address these limitations, we propose the R2C2-Coder to enhance and benchmark the real-world repository-level code completion abilities of code Large Language Models, where the R2C2-Coder includes a code prompt construction method R2C2-Enhance and a well-designed benchmark R2C2-Bench. Specifically, first, in R2C2-Enhance, we first construct the candidate retrieval pool and then assemble the completion prompt by retrieving from the retrieval pool for each completion cursor position. Second, based on R2C2 -Enhance, we can construct a more challenging and diverse R2C2-Bench with training, validation and test splits, where a context perturbation strategy is proposed to simulate the real-world repository-level code completion well. Extensive results on multiple benchmarks demonstrate the effectiveness of our R2C2-Coder.

  • 15 authors
·
Jun 3, 2024

PAXQA: Generating Cross-lingual Question Answering Examples at Training Scale

Existing question answering (QA) systems owe much of their success to large, high-quality training data. Such annotation efforts are costly, and the difficulty compounds in the cross-lingual setting. Therefore, prior cross-lingual QA work has focused on releasing evaluation datasets, and then applying zero-shot methods as baselines. This work proposes a synthetic data generation method for cross-lingual QA which leverages indirect supervision from existing parallel corpora. Our method termed PAXQA (Projecting annotations for cross-lingual (x) QA) decomposes cross-lingual QA into two stages. First, we apply a question generation (QG) model to the English side. Second, we apply annotation projection to translate both the questions and answers. To better translate questions, we propose a novel use of lexically-constrained machine translation, in which constrained entities are extracted from the parallel bitexts. We apply PAXQA to generate cross-lingual QA examples in 4 languages (662K examples total), and perform human evaluation on a subset to create validation and test splits. We then show that models fine-tuned on these datasets outperform prior synthetic data generation models over several extractive QA datasets. The largest performance gains are for directions with non-English questions and English contexts. Ablation studies show that our dataset generation method is relatively robust to noise from automatic word alignments, showing the sufficient quality of our generations. To facilitate follow-up work, we release our code and datasets at https://github.com/manestay/paxqa .

  • 2 authors
·
Apr 24, 2023

Robust Binding Energy Distribution Sampling on Amorphous Solid Water Models. Method testing and validation with NH3, CO and CH4

This work aims to develop a method based on a structurally reliable ice model and a statistically and physico-chemically robust approach for BE distribution inference, with the aim to be applicable to various relevant interstellar species. A multiscale computational approach is presented, with a Molecular Dynamics (MD) Heat & Quench protocol for the amorphous water ice model, and an ONIOM(B3LYP-D3(BJ)/6-311+G**:GFN2-xtb) scheme for the BE inference, with a prime emphasis onto the BE/real system size convergence. The sampling of the binding configurations is twofold, exploring both regularly spaced binding sites, as well as various adsorbate-to-substrate orientations on each locally distinct site. This second source of BE diversity accounts for the local roughness of the potential energy landscape of the substrate. Three different adsorbate test cases are considered, i.e. NH3, CO and CH4, owing to their significance in dust icy mantles, and their distinct binding behavior with water ices. The BE distributions for NH3, CO and CH4 have been inferred, with converged statistics. The distribution for NH3 is better represented by a double Gaussian component profile. Three starting adsorbate orientations per site are required to reach convergence for both Gaussian components of NH3, while 2 orientations are sufficient for CO, and one unique for CH4 (symmetric). Further geometrical and molecular surrounding insights have been provided. These results encompass previously reported results.

  • 4 authors
·
Apr 25, 2025

RAVEN: RAnking and Validation of ExoplaNets

We present RAVEN, a newly developed vetting and validation pipeline for TESS exoplanet candidates. The pipeline employs a Bayesian framework to derive the posterior probability of a candidate being a planet against a set of False Positive (FP) scenarios, through the use of a Gradient Boosted Decision Tree and a Gaussian Process classifier, trained on comprehensive synthetic training sets of simulated planets and 8 astrophysical FP scenarios injected into TESS lightcurves. These training sets allow large scale candidate vetting and performance verification against individual FP scenarios. A Non-Simulated FP training set consisting of real TESS candidates caused primarily by stellar variability and systematic noise is also included. The machine learning derived probabilities are combined with scenario specific prior probabilities, including the candidates' positional probabilities, to compute the final posterior probabilities. Candidates with a planetary posterior probability greater than 99% against each FP scenario and whose implied planetary radius is less than 8R_{oplus} are considered to be statistically validated by the pipeline. In this first version, the pipeline has been developed for candidates with a lightcurve released from the TESS Science Processing Operations Centre, an orbital period between 0.5 and 16 days and a transit depth greater than 300ppm. The pipeline obtained area-under-curve (AUC) scores > 97% on all FP scenarios and > 99% on all but one. Testing on an independent external sample of 1361 pre-classified TOIs, the pipeline achieved an overall accuracy of 91%, demonstrating its effectiveness for automated ranking of TESS candidates. For a probability threshold of 0.9 the pipeline reached a precision of 97% with a recall score of 66% on these TOIs. The RAVEN pipeline is publicly released as a cloud-hosted app, making it easily accessible to the community.

  • 8 authors
·
Sep 22, 2025

Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute

Recent advancements in software engineering agents have demonstrated promising capabilities in automating program improvements. However, their reliance on closed-source or resource-intensive models introduces significant deployment challenges in private environments, prompting a critical question: How can personally deployable open-source LLMs achieve comparable code reasoning performance? To this end, we propose a unified Test-Time Compute scaling framework that leverages increased inference-time computation instead of larger models. Our framework incorporates two complementary strategies: internal TTC and external TTC. Internally, we introduce a development-contextualized trajectory synthesis method leveraging real-world software repositories to bootstrap multi-stage reasoning processes, such as fault localization and patch generation. We further enhance trajectory quality through rejection sampling, rigorously evaluating trajectories along accuracy and complexity. Externally, we propose a novel development-process-based search strategy guided by reward models and execution verification. This approach enables targeted computational allocation at critical development decision points, overcoming limitations of existing "end-point only" verification methods. Evaluations on SWE-bench Verified demonstrate our 32B model achieves a 46\% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1. Additionally, we provide the empirical validation of the test-time scaling phenomenon within SWE agents, revealing that models dynamically allocate more tokens to increasingly challenging problems, effectively enhancing reasoning capabilities. We publicly release all training data, models, and code to facilitate future research. https://github.com/yingweima2022/SWE-Reasoner

  • 8 authors
·
Mar 31, 2025