File size: 9,875 Bytes
cd5fcb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
"""
This file contains the definition of encoders used in https://arxiv.org/pdf/1705.02364.pdf
"""
import numpy as np
import time
import torch
import torch.nn as nn
class InferSent(nn.Module):
def __init__(self, config):
super(InferSent, self).__init__()
self.bsize = config['bsize']
self.word_emb_dim = config['word_emb_dim']
self.enc_lstm_dim = config['enc_lstm_dim']
self.pool_type = config['pool_type']
self.dpout_model = config['dpout_model']
self.version = 1 if 'version' not in config else config['version']
self.enc_lstm = nn.LSTM(self.word_emb_dim, self.enc_lstm_dim, 1,
bidirectional=True, dropout=self.dpout_model)
assert self.version in [1, 2]
if self.version == 1:
self.bos = '<s>'
self.eos = '</s>'
self.max_pad = True
self.moses_tok = False
elif self.version == 2:
self.bos = '<p>'
self.eos = '</p>'
self.max_pad = False
self.moses_tok = True
def is_cuda(self):
# either all weights are on cpu or they are on gpu
return self.enc_lstm.bias_hh_l0.data.is_cuda
def forward(self, sent_tuple):
# sent_len: [max_len, ..., min_len] (bsize)
# sent: (seqlen x bsize x worddim)
sent, sent_len = sent_tuple
# Sort by length (keep idx)
sent_len_sorted, idx_sort = np.sort(sent_len)[::-1], np.argsort(-sent_len)
sent_len_sorted = sent_len_sorted.copy()
idx_unsort = np.argsort(idx_sort)
idx_sort = torch.from_numpy(idx_sort).cuda() if self.is_cuda() \
else torch.from_numpy(idx_sort)
sent = sent.index_select(1, idx_sort)
# Handling padding in Recurrent Networks
sent_packed = nn.utils.rnn.pack_padded_sequence(sent, sent_len_sorted)
sent_output = self.enc_lstm(sent_packed)[0] # seqlen x batch x 2*nhid
sent_output = nn.utils.rnn.pad_packed_sequence(sent_output)[0]
# Un-sort by length
idx_unsort = torch.from_numpy(idx_unsort).cuda() if self.is_cuda() \
else torch.from_numpy(idx_unsort)
sent_output = sent_output.index_select(1, idx_unsort)
# Pooling
if self.pool_type == "mean":
sent_len = torch.FloatTensor(sent_len.copy()).unsqueeze(1).cuda()
emb = torch.sum(sent_output, 0).squeeze(0)
emb = emb / sent_len.expand_as(emb)
elif self.pool_type == "max":
if not self.max_pad:
sent_output[sent_output == 0] = -1e9
emb = torch.max(sent_output, 0)[0]
if emb.ndimension() == 3:
emb = emb.squeeze(0)
assert emb.ndimension() == 2
return emb
def set_w2v_path(self, w2v_path):
self.w2v_path = w2v_path
def get_word_dict(self, sentences, tokenize=True):
# create vocab of words
word_dict = {}
sentences = [s.split() if not tokenize else self.tokenize(s) for s in sentences]
for sent in sentences:
for word in sent:
if word not in word_dict:
word_dict[word] = ''
word_dict[self.bos] = ''
word_dict[self.eos] = ''
return word_dict
def get_w2v(self, word_dict):
assert hasattr(self, 'w2v_path'), 'w2v path not set'
# create word_vec with w2v vectors
word_vec = {}
with open(self.w2v_path, encoding='utf-8') as f:
for line in f:
word, vec = line.split(' ', 1)
if word in word_dict:
word_vec[word] = np.fromstring(vec, sep=' ')
print('Found %s(/%s) words with w2v vectors' % (len(word_vec), len(word_dict)))
return word_vec
def get_w2v_k(self, K):
assert hasattr(self, 'w2v_path'), 'w2v path not set'
# create word_vec with k first w2v vectors
k = 0
word_vec = {}
with open(self.w2v_path, encoding='utf-8') as f:
for line in f:
word, vec = line.split(' ', 1)
if k <= K:
word_vec[word] = np.fromstring(vec, sep=' ')
k += 1
if k > K:
if word in [self.bos, self.eos]:
word_vec[word] = np.fromstring(vec, sep=' ')
if k > K and all([w in word_vec for w in [self.bos, self.eos]]):
break
return word_vec
def build_vocab(self, sentences, tokenize=True):
assert hasattr(self, 'w2v_path'), 'w2v path not set'
word_dict = self.get_word_dict(sentences, tokenize)
self.word_vec = self.get_w2v(word_dict)
print('Vocab size : %s' % (len(self.word_vec)))
# build w2v vocab with k most frequent words
def build_vocab_k_words(self, K):
assert hasattr(self, 'w2v_path'), 'w2v path not set'
self.word_vec = self.get_w2v_k(K)
print('Vocab size : %s' % (K))
def update_vocab(self, sentences, tokenize=True):
assert hasattr(self, 'w2v_path'), 'warning : w2v path not set'
assert hasattr(self, 'word_vec'), 'build_vocab before updating it'
word_dict = self.get_word_dict(sentences, tokenize)
# keep only new words
for word in self.word_vec:
if word in word_dict:
del word_dict[word]
# udpate vocabulary
if word_dict:
new_word_vec = self.get_w2v(word_dict)
self.word_vec.update(new_word_vec)
else:
new_word_vec = []
print('New vocab size : %s (added %s words)'% (len(self.word_vec), len(new_word_vec)))
def get_batch(self, batch):
# sent in batch in decreasing order of lengths
# batch: (bsize, max_len, word_dim)
embed = np.zeros((len(batch[0]), len(batch), self.word_emb_dim))
for i in range(len(batch)):
for j in range(len(batch[i])):
embed[j, i, :] = self.word_vec[batch[i][j]]
return torch.FloatTensor(embed)
def tokenize(self, s):
from nltk.tokenize import word_tokenize
if self.moses_tok:
s = ' '.join(word_tokenize(s))
s = s.replace(" n't ", "n 't ") # HACK to get ~MOSES tokenization
return s.split()
else:
return word_tokenize(s)
def prepare_samples(self, sentences, bsize, tokenize, verbose):
sentences = [[self.bos] + s.split() + [self.eos] if not tokenize else
[self.bos] + self.tokenize(s) + [self.eos] for s in sentences]
n_w = np.sum([len(x) for x in sentences])
# filters words without w2v vectors
for i in range(len(sentences)):
s_f = [word for word in sentences[i] if word in self.word_vec]
if not s_f:
import warnings
warnings.warn('No words in "%s" (idx=%s) have w2v vectors. \
Replacing by "</s>"..' % (sentences[i], i))
s_f = [self.eos]
sentences[i] = s_f
lengths = np.array([len(s) for s in sentences])
n_wk = np.sum(lengths)
if verbose:
print('Nb words kept : %s/%s (%.1f%s)' % (
n_wk, n_w, 100.0 * n_wk / n_w, '%'))
# sort by decreasing length
lengths, idx_sort = np.sort(lengths)[::-1], np.argsort(-lengths)
sentences = np.array(sentences)[idx_sort]
return sentences, lengths, idx_sort
def encode(self, sentences, bsize=64, tokenize=True, verbose=False):
tic = time.time()
sentences, lengths, idx_sort = self.prepare_samples(
sentences, bsize, tokenize, verbose)
embeddings = []
for stidx in range(0, len(sentences), bsize):
batch = self.get_batch(sentences[stidx:stidx + bsize])
if self.is_cuda():
batch = batch.cuda()
with torch.no_grad():
batch = self.forward((batch, lengths[stidx:stidx + bsize])).data.cpu().numpy()
embeddings.append(batch)
embeddings = np.vstack(embeddings)
# unsort
idx_unsort = np.argsort(idx_sort)
embeddings = embeddings[idx_unsort]
if verbose:
print('Speed : %.1f sentences/s (%s mode, bsize=%s)' % (
len(embeddings)/(time.time()-tic),
'gpu' if self.is_cuda() else 'cpu', bsize))
return embeddings
def visualize(self, sent, tokenize=True):
sent = sent.split() if not tokenize else self.tokenize(sent)
sent = [[self.bos] + [word for word in sent if word in self.word_vec] + [self.eos]]
if ' '.join(sent[0]) == '%s %s' % (self.bos, self.eos):
import warnings
warnings.warn('No words in "%s" have w2v vectors. Replacing \
by "%s %s"..' % (sent, self.bos, self.eos))
batch = self.get_batch(sent)
if self.is_cuda():
batch = batch.cuda()
output = self.enc_lstm(batch)[0]
output, idxs = torch.max(output, 0)
# output, idxs = output.squeeze(), idxs.squeeze()
idxs = idxs.data.cpu().numpy()
argmaxs = [np.sum((idxs == k)) for k in range(len(sent[0]))]
# visualize model
import matplotlib.pyplot as plt
x = range(len(sent[0]))
y = [100.0 * n / np.sum(argmaxs) for n in argmaxs]
plt.xticks(x, sent[0], rotation=45)
plt.bar(x, y)
plt.ylabel('%')
plt.title('Visualisation of words importance')
plt.show()
return output, idxs
|