File size: 6,786 Bytes
cd5fcb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#

'''
probing tasks
'''

from __future__ import absolute_import, division, unicode_literals

import os
import io
import copy
import logging
import numpy as np

from senteval.tools.validation import SplitClassifier


class PROBINGEval(object):
    def __init__(self, task, task_path, seed=1111):
        self.seed = seed
        self.task = task
        logging.debug('***** (Probing) Transfer task : %s classification *****', self.task.upper())
        self.task_data = {'train': {'X': [], 'y': []},
                          'dev': {'X': [], 'y': []},
                          'test': {'X': [], 'y': []}}
        self.loadFile(task_path)
        logging.info('Loaded %s train - %s dev - %s test for %s' %
                     (len(self.task_data['train']['y']), len(self.task_data['dev']['y']),
                      len(self.task_data['test']['y']), self.task))

    def do_prepare(self, params, prepare):
        samples = self.task_data['train']['X'] + self.task_data['dev']['X'] + \
                  self.task_data['test']['X']
        return prepare(params, samples)

    def loadFile(self, fpath):
        self.tok2split = {'tr': 'train', 'va': 'dev', 'te': 'test'}
        with io.open(fpath, 'r', encoding='utf-8') as f:
            for line in f:
                line = line.rstrip().split('\t')
                self.task_data[self.tok2split[line[0]]]['X'].append(line[-1].split())
                self.task_data[self.tok2split[line[0]]]['y'].append(line[1])

        labels = sorted(np.unique(self.task_data['train']['y']))
        self.tok2label = dict(zip(labels, range(len(labels))))
        self.nclasses = len(self.tok2label)

        for split in self.task_data:
            for i, y in enumerate(self.task_data[split]['y']):
                self.task_data[split]['y'][i] = self.tok2label[y]

    def run(self, params, batcher):
        task_embed = {'train': {}, 'dev': {}, 'test': {}}
        bsize = params.batch_size
        logging.info('Computing embeddings for train/dev/test')
        for key in self.task_data:
            # Sort to reduce padding
            sorted_data = sorted(zip(self.task_data[key]['X'],
                                     self.task_data[key]['y']),
                                 key=lambda z: (len(z[0]), z[1]))
            self.task_data[key]['X'], self.task_data[key]['y'] = map(list, zip(*sorted_data))

            task_embed[key]['X'] = []
            for ii in range(0, len(self.task_data[key]['y']), bsize):
                batch = self.task_data[key]['X'][ii:ii + bsize]
                embeddings = batcher(params, batch)
                task_embed[key]['X'].append(embeddings)
            task_embed[key]['X'] = np.vstack(task_embed[key]['X'])
            task_embed[key]['y'] = np.array(self.task_data[key]['y'])
        logging.info('Computed embeddings')

        config_classifier = {'nclasses': self.nclasses, 'seed': self.seed,
                             'usepytorch': params.usepytorch,
                             'classifier': params.classifier}

        if self.task == "WordContent" and params.classifier['nhid'] > 0:
            config_classifier = copy.deepcopy(config_classifier)
            config_classifier['classifier']['nhid'] = 0
            print(params.classifier['nhid'])

        clf = SplitClassifier(X={'train': task_embed['train']['X'],
                                 'valid': task_embed['dev']['X'],
                                 'test': task_embed['test']['X']},
                              y={'train': task_embed['train']['y'],
                                 'valid': task_embed['dev']['y'],
                                 'test': task_embed['test']['y']},
                              config=config_classifier)

        devacc, testacc = clf.run()
        logging.debug('\nDev acc : %.1f Test acc : %.1f for %s classification\n' % (devacc, testacc, self.task.upper()))

        return {'devacc': devacc, 'acc': testacc,
                'ndev': len(task_embed['dev']['X']),
                'ntest': len(task_embed['test']['X'])}

"""
Surface Information
"""
class LengthEval(PROBINGEval):
    def __init__(self, task_path, seed=1111):
        task_path = os.path.join(task_path, 'sentence_length.txt')
        # labels: bins
        PROBINGEval.__init__(self, 'Length', task_path, seed)

class WordContentEval(PROBINGEval):
    def __init__(self, task_path, seed=1111):
        task_path = os.path.join(task_path, 'word_content.txt')
        # labels: 200 target words
        PROBINGEval.__init__(self, 'WordContent', task_path, seed)

"""
Latent Structural Information
"""
class DepthEval(PROBINGEval):
    def __init__(self, task_path, seed=1111):
        task_path = os.path.join(task_path, 'tree_depth.txt')
        # labels: bins
        PROBINGEval.__init__(self, 'Depth', task_path, seed)

class TopConstituentsEval(PROBINGEval):
    def __init__(self, task_path, seed=1111):
        task_path = os.path.join(task_path, 'top_constituents.txt')
        # labels: 'PP_NP_VP_.' .. (20 classes)
        PROBINGEval.__init__(self, 'TopConstituents', task_path, seed)

class BigramShiftEval(PROBINGEval):
    def __init__(self, task_path, seed=1111):
        task_path = os.path.join(task_path, 'bigram_shift.txt')
        # labels: 0 or 1
        PROBINGEval.__init__(self, 'BigramShift', task_path, seed)

# TODO: Voice?

"""
Latent Semantic Information
"""

class TenseEval(PROBINGEval):
    def __init__(self, task_path, seed=1111):
        task_path = os.path.join(task_path, 'past_present.txt')
        # labels: 'PRES', 'PAST'
        PROBINGEval.__init__(self, 'Tense', task_path, seed)

class SubjNumberEval(PROBINGEval):
    def __init__(self, task_path, seed=1111):
        task_path = os.path.join(task_path, 'subj_number.txt')
        # labels: 'NN', 'NNS'
        PROBINGEval.__init__(self, 'SubjNumber', task_path, seed)

class ObjNumberEval(PROBINGEval):
    def __init__(self, task_path, seed=1111):
        task_path = os.path.join(task_path, 'obj_number.txt')
        # labels: 'NN', 'NNS'
        PROBINGEval.__init__(self, 'ObjNumber', task_path, seed)

class OddManOutEval(PROBINGEval):
    def __init__(self, task_path, seed=1111):
        task_path = os.path.join(task_path, 'odd_man_out.txt')
        # labels: 'O', 'C'
        PROBINGEval.__init__(self, 'OddManOut', task_path, seed)

class CoordinationInversionEval(PROBINGEval):
    def __init__(self, task_path, seed=1111):
        task_path = os.path.join(task_path, 'coordination_inversion.txt')
        # labels: 'O', 'I'
        PROBINGEval.__init__(self, 'CoordinationInversion', task_path, seed)