File size: 9,696 Bytes
cd5fcb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#

'''
STS-{2012,2013,2014,2015,2016} (unsupervised) and
STS-benchmark (supervised) tasks
'''

from __future__ import absolute_import, division, unicode_literals

import os
import io
import numpy as np
import logging

from scipy.stats import spearmanr, pearsonr

from senteval.utils import cosine
from senteval.sick import SICKEval


class STSEval(object):
    def loadFile(self, fpath):
        self.data = {}
        self.samples = []

        for dataset in self.datasets:
            sent1, sent2 = zip(*[l.split("\t") for l in
                               io.open(fpath + '/STS.input.%s.txt' % dataset,
                                       encoding='utf8').read().splitlines()])
            raw_scores = np.array([x for x in
                                   io.open(fpath + '/STS.gs.%s.txt' % dataset,
                                           encoding='utf8')
                                   .read().splitlines()])
            not_empty_idx = raw_scores != ''

            gs_scores = [float(x) for x in raw_scores[not_empty_idx]]
            sent1 = np.array([s.split() for s in sent1])[not_empty_idx]
            sent2 = np.array([s.split() for s in sent2])[not_empty_idx]
            # sort data by length to minimize padding in batcher
            sorted_data = sorted(zip(sent1, sent2, gs_scores),
                                 key=lambda z: (len(z[0]), len(z[1]), z[2]))
            sent1, sent2, gs_scores = map(list, zip(*sorted_data))

            self.data[dataset] = (sent1, sent2, gs_scores)
            self.samples += sent1 + sent2

    def do_prepare(self, params, prepare):
        if 'similarity' in params:
            self.similarity = params.similarity
        else:  # Default similarity is cosine
            self.similarity = lambda s1, s2: np.nan_to_num(cosine(np.nan_to_num(s1), np.nan_to_num(s2)))
        return prepare(params, self.samples)

    def run(self, params, batcher):
        results = {}
        all_sys_scores = []
        all_gs_scores = []
        for dataset in self.datasets:
            sys_scores = []
            input1, input2, gs_scores = self.data[dataset]
            for ii in range(0, len(gs_scores), params.batch_size):
                batch1 = input1[ii:ii + params.batch_size]
                batch2 = input2[ii:ii + params.batch_size]

                # we assume get_batch already throws out the faulty ones
                if len(batch1) == len(batch2) and len(batch1) > 0:
                    enc1 = batcher(params, batch1)
                    enc2 = batcher(params, batch2)

                    for kk in range(enc2.shape[0]):
                        sys_score = self.similarity(enc1[kk], enc2[kk])
                        sys_scores.append(sys_score)
            all_sys_scores.extend(sys_scores)
            all_gs_scores.extend(gs_scores)
            results[dataset] = {'pearson': pearsonr(sys_scores, gs_scores),
                                'spearman': spearmanr(sys_scores, gs_scores),
                                'nsamples': len(sys_scores)}
            logging.debug('%s : pearson = %.4f, spearman = %.4f' %
                          (dataset, results[dataset]['pearson'][0],
                           results[dataset]['spearman'][0]))

        weights = [results[dset]['nsamples'] for dset in results.keys()]
        list_prs = np.array([results[dset]['pearson'][0] for
                            dset in results.keys()])
        list_spr = np.array([results[dset]['spearman'][0] for
                            dset in results.keys()])

        avg_pearson = np.average(list_prs)
        avg_spearman = np.average(list_spr)
        wavg_pearson = np.average(list_prs, weights=weights)
        wavg_spearman = np.average(list_spr, weights=weights)
        all_pearson = pearsonr(all_sys_scores, all_gs_scores)
        all_spearman = spearmanr(all_sys_scores, all_gs_scores)
        results['all'] = {'pearson': {'all': all_pearson[0],
                                      'mean': avg_pearson,
                                      'wmean': wavg_pearson},
                          'spearman': {'all': all_spearman[0],
                                       'mean': avg_spearman,
                                       'wmean': wavg_spearman}}
        logging.debug('ALL : Pearson = %.4f, \
            Spearman = %.4f' % (all_pearson[0], all_spearman[0]))
        logging.debug('ALL (weighted average) : Pearson = %.4f, \
            Spearman = %.4f' % (wavg_pearson, wavg_spearman))
        logging.debug('ALL (average) : Pearson = %.4f, \
            Spearman = %.4f\n' % (avg_pearson, avg_spearman))

        return results


class STS12Eval(STSEval):
    def __init__(self, taskpath, seed=1111):
        logging.debug('***** Transfer task : STS12 *****\n\n')
        self.seed = seed
        self.datasets = ['MSRpar', 'MSRvid', 'SMTeuroparl',
                         'surprise.OnWN', 'surprise.SMTnews']
        self.loadFile(taskpath)


class STS13Eval(STSEval):
    # STS13 here does not contain the "SMT" subtask due to LICENSE issue
    def __init__(self, taskpath, seed=1111):
        logging.debug('***** Transfer task : STS13 (-SMT) *****\n\n')
        self.seed = seed
        self.datasets = ['FNWN', 'headlines', 'OnWN']
        self.loadFile(taskpath)


class STS14Eval(STSEval):
    def __init__(self, taskpath, seed=1111):
        logging.debug('***** Transfer task : STS14 *****\n\n')
        self.seed = seed
        self.datasets = ['deft-forum', 'deft-news', 'headlines',
                         'images', 'OnWN', 'tweet-news']
        self.loadFile(taskpath)


class STS15Eval(STSEval):
    def __init__(self, taskpath, seed=1111):
        logging.debug('***** Transfer task : STS15 *****\n\n')
        self.seed = seed
        self.datasets = ['answers-forums', 'answers-students',
                         'belief', 'headlines', 'images']
        self.loadFile(taskpath)


class STS16Eval(STSEval):
    def __init__(self, taskpath, seed=1111):
        logging.debug('***** Transfer task : STS16 *****\n\n')
        self.seed = seed
        self.datasets = ['answer-answer', 'headlines', 'plagiarism',
                         'postediting', 'question-question']
        self.loadFile(taskpath)


class STSBenchmarkEval(STSEval):
    def __init__(self, task_path, seed=1111):
        logging.debug('\n\n***** Transfer task : STSBenchmark*****\n\n')
        self.seed = seed
        self.samples = []
        train = self.loadFile(os.path.join(task_path, 'sts-train.csv'))
        dev = self.loadFile(os.path.join(task_path, 'sts-dev.csv'))
        test = self.loadFile(os.path.join(task_path, 'sts-test.csv'))
        self.datasets = ['train', 'dev', 'test']
        self.data = {'train': train, 'dev': dev, 'test': test}

    def loadFile(self, fpath):
        sick_data = {'X_A': [], 'X_B': [], 'y': []}
        with io.open(fpath, 'r', encoding='utf-8') as f:
            for line in f:
                text = line.strip().split('\t')
                sick_data['X_A'].append(text[5].split())
                sick_data['X_B'].append(text[6].split())
                sick_data['y'].append(text[4])

        sick_data['y'] = [float(s) for s in sick_data['y']]
        self.samples += sick_data['X_A'] + sick_data["X_B"]
        return (sick_data['X_A'], sick_data["X_B"], sick_data['y'])

class STSBenchmarkFinetune(SICKEval):
    def __init__(self, task_path, seed=1111):
        logging.debug('\n\n***** Transfer task : STSBenchmark*****\n\n')
        self.seed = seed
        train = self.loadFile(os.path.join(task_path, 'sts-train.csv'))
        dev = self.loadFile(os.path.join(task_path, 'sts-dev.csv'))
        test = self.loadFile(os.path.join(task_path, 'sts-test.csv'))
        self.sick_data = {'train': train, 'dev': dev, 'test': test}

    def loadFile(self, fpath):
        sick_data = {'X_A': [], 'X_B': [], 'y': []}
        with io.open(fpath, 'r', encoding='utf-8') as f:
            for line in f:
                text = line.strip().split('\t')
                sick_data['X_A'].append(text[5].split())
                sick_data['X_B'].append(text[6].split())
                sick_data['y'].append(text[4])

        sick_data['y'] = [float(s) for s in sick_data['y']]
        return sick_data
        
class SICKRelatednessEval(STSEval):
    def __init__(self, task_path, seed=1111):
        logging.debug('\n\n***** Transfer task : SICKRelatedness*****\n\n')
        self.seed = seed
        self.samples = []
        train = self.loadFile(os.path.join(task_path, 'SICK_train.txt'))
        dev = self.loadFile(os.path.join(task_path, 'SICK_trial.txt'))
        test = self.loadFile(os.path.join(task_path, 'SICK_test_annotated.txt'))
        self.datasets = ['train', 'dev', 'test']
        self.data = {'train': train, 'dev': dev, 'test': test}
    
    def loadFile(self, fpath):
        skipFirstLine = True
        sick_data = {'X_A': [], 'X_B': [], 'y': []}
        with io.open(fpath, 'r', encoding='utf-8') as f:
            for line in f:
                if skipFirstLine:
                    skipFirstLine = False
                else:
                    text = line.strip().split('\t')
                    sick_data['X_A'].append(text[1].split())
                    sick_data['X_B'].append(text[2].split())
                    sick_data['y'].append(text[3])

        sick_data['y'] = [float(s) for s in sick_data['y']]
        self.samples += sick_data['X_A'] + sick_data["X_B"]
        return (sick_data['X_A'], sick_data["X_B"], sick_data['y'])