File size: 7,737 Bytes
cd5fcb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#

"""
Pytorch Classifier class in the style of scikit-learn
Classifiers include Logistic Regression and MLP
"""

from __future__ import absolute_import, division, unicode_literals

import numpy as np
import copy
from senteval import utils

import torch
from torch import nn
import torch.nn.functional as F


class PyTorchClassifier(object):
    def __init__(self, inputdim, nclasses, l2reg=0., batch_size=64, seed=1111,
                 cudaEfficient=False):
        # fix seed
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)

        self.inputdim = inputdim
        self.nclasses = nclasses
        self.l2reg = l2reg
        self.batch_size = batch_size
        self.cudaEfficient = cudaEfficient

    def prepare_split(self, X, y, validation_data=None, validation_split=None):
        # Preparing validation data
        assert validation_split or validation_data
        if validation_data is not None:
            trainX, trainy = X, y
            devX, devy = validation_data
        else:
            permutation = np.random.permutation(len(X))
            trainidx = permutation[int(validation_split * len(X)):]
            devidx = permutation[0:int(validation_split * len(X))]
            trainX, trainy = X[trainidx], y[trainidx]
            devX, devy = X[devidx], y[devidx]

        device = torch.device('cpu') if self.cudaEfficient else torch.device('cuda')

        trainX = torch.from_numpy(trainX).to(device, dtype=torch.float32)
        trainy = torch.from_numpy(trainy).to(device, dtype=torch.int64)
        devX = torch.from_numpy(devX).to(device, dtype=torch.float32)
        devy = torch.from_numpy(devy).to(device, dtype=torch.int64)

        return trainX, trainy, devX, devy

    def fit(self, X, y, validation_data=None, validation_split=None,
            early_stop=True):
        self.nepoch = 0
        bestaccuracy = -1
        stop_train = False
        early_stop_count = 0

        # Preparing validation data
        trainX, trainy, devX, devy = self.prepare_split(X, y, validation_data,
                                                        validation_split)

        # Training
        while not stop_train and self.nepoch <= self.max_epoch:
            self.trainepoch(trainX, trainy, epoch_size=self.epoch_size)
            accuracy = self.score(devX, devy)
            if accuracy > bestaccuracy:
                bestaccuracy = accuracy
                bestmodel = copy.deepcopy(self.model)
            elif early_stop:
                if early_stop_count >= self.tenacity:
                    stop_train = True
                early_stop_count += 1
        self.model = bestmodel
        return bestaccuracy

    def trainepoch(self, X, y, epoch_size=1):
        self.model.train()
        for _ in range(self.nepoch, self.nepoch + epoch_size):
            permutation = np.random.permutation(len(X))
            all_costs = []
            for i in range(0, len(X), self.batch_size):
                # forward
                idx = torch.from_numpy(permutation[i:i + self.batch_size]).long().to(X.device)

                Xbatch = X[idx]
                ybatch = y[idx]

                if self.cudaEfficient:
                    Xbatch = Xbatch.cuda()
                    ybatch = ybatch.cuda()
                output = self.model(Xbatch)
                # loss
                loss = self.loss_fn(output, ybatch)
                all_costs.append(loss.data.item())
                # backward
                self.optimizer.zero_grad()
                loss.backward()
                # Update parameters
                self.optimizer.step()
        self.nepoch += epoch_size

    def score(self, devX, devy):
        self.model.eval()
        correct = 0
        if not isinstance(devX, torch.cuda.FloatTensor) or self.cudaEfficient:
            devX = torch.FloatTensor(devX).cuda()
            devy = torch.LongTensor(devy).cuda()
        with torch.no_grad():
            for i in range(0, len(devX), self.batch_size):
                Xbatch = devX[i:i + self.batch_size]
                ybatch = devy[i:i + self.batch_size]
                if self.cudaEfficient:
                    Xbatch = Xbatch.cuda()
                    ybatch = ybatch.cuda()
                output = self.model(Xbatch)
                pred = output.data.max(1)[1]
                correct += pred.long().eq(ybatch.data.long()).sum().item()
            accuracy = 1.0 * correct / len(devX)
        return accuracy

    def predict(self, devX):
        self.model.eval()
        if not isinstance(devX, torch.cuda.FloatTensor):
            devX = torch.FloatTensor(devX).cuda()
        yhat = np.array([])
        with torch.no_grad():
            for i in range(0, len(devX), self.batch_size):
                Xbatch = devX[i:i + self.batch_size]
                output = self.model(Xbatch)
                yhat = np.append(yhat,
                                 output.data.max(1)[1].cpu().numpy())
        yhat = np.vstack(yhat)
        return yhat

    def predict_proba(self, devX):
        self.model.eval()
        probas = []
        with torch.no_grad():
            for i in range(0, len(devX), self.batch_size):
                Xbatch = devX[i:i + self.batch_size]
                vals = F.softmax(self.model(Xbatch).data.cpu().numpy())
                if not probas:
                    probas = vals
                else:
                    probas = np.concatenate(probas, vals, axis=0)
        return probas


"""
MLP with Pytorch (nhid=0 --> Logistic Regression)
"""

class MLP(PyTorchClassifier):
    def __init__(self, params, inputdim, nclasses, l2reg=0., batch_size=64,
                 seed=1111, cudaEfficient=False):
        super(self.__class__, self).__init__(inputdim, nclasses, l2reg,
                                             batch_size, seed, cudaEfficient)
        """
        PARAMETERS:
        -nhid:       number of hidden units (0: Logistic Regression)
        -optim:      optimizer ("sgd,lr=0.1", "adam", "rmsprop" ..)
        -tenacity:   how many times dev acc does not increase before stopping
        -epoch_size: each epoch corresponds to epoch_size pass on the train set
        -max_epoch:  max number of epoches
        -dropout:    dropout for MLP
        """

        self.nhid = 0 if "nhid" not in params else params["nhid"]
        self.optim = "adam" if "optim" not in params else params["optim"]
        self.tenacity = 5 if "tenacity" not in params else params["tenacity"]
        self.epoch_size = 4 if "epoch_size" not in params else params["epoch_size"]
        self.max_epoch = 200 if "max_epoch" not in params else params["max_epoch"]
        self.dropout = 0. if "dropout" not in params else params["dropout"]
        self.batch_size = 64 if "batch_size" not in params else params["batch_size"]

        if params["nhid"] == 0:
            self.model = nn.Sequential(
                nn.Linear(self.inputdim, self.nclasses),
            ).cuda()
        else:
            self.model = nn.Sequential(
                nn.Linear(self.inputdim, params["nhid"]),
                nn.Dropout(p=self.dropout),
                nn.Sigmoid(),
                nn.Linear(params["nhid"], self.nclasses),
            ).cuda()

        self.loss_fn = nn.CrossEntropyLoss().cuda()
        self.loss_fn.size_average = False

        optim_fn, optim_params = utils.get_optimizer(self.optim)
        self.optimizer = optim_fn(self.model.parameters(), **optim_params)
        self.optimizer.param_groups[0]['weight_decay'] = self.l2reg