File size: 10,358 Bytes
cd5fcb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
"""
Validation and classification
(train) : inner-kfold classifier
(train, test) : kfold classifier
(train, dev, test) : split classifier
"""
from __future__ import absolute_import, division, unicode_literals
import logging
import numpy as np
from senteval.tools.classifier import MLP
import sklearn
assert(sklearn.__version__ >= "0.18.0"), \
"need to update sklearn to version >= 0.18.0"
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import StratifiedKFold
def get_classif_name(classifier_config, usepytorch):
if not usepytorch:
modelname = 'sklearn-LogReg'
else:
nhid = classifier_config['nhid']
optim = 'adam' if 'optim' not in classifier_config else classifier_config['optim']
bs = 64 if 'batch_size' not in classifier_config else classifier_config['batch_size']
modelname = 'pytorch-MLP-nhid%s-%s-bs%s' % (nhid, optim, bs)
return modelname
# Pytorch version
class InnerKFoldClassifier(object):
"""
(train) split classifier : InnerKfold.
"""
def __init__(self, X, y, config):
self.X = X
self.y = y
self.featdim = X.shape[1]
self.nclasses = config['nclasses']
self.seed = config['seed']
self.devresults = []
self.testresults = []
self.usepytorch = config['usepytorch']
self.classifier_config = config['classifier']
self.modelname = get_classif_name(self.classifier_config, self.usepytorch)
self.k = 5 if 'kfold' not in config else config['kfold']
def run(self):
logging.info('Training {0} with (inner) {1}-fold cross-validation'
.format(self.modelname, self.k))
regs = [10**t for t in range(-5, -1)] if self.usepytorch else \
[2**t for t in range(-2, 4, 1)]
skf = StratifiedKFold(n_splits=self.k, shuffle=True, random_state=1111)
innerskf = StratifiedKFold(n_splits=self.k, shuffle=True,
random_state=1111)
count = 0
for train_idx, test_idx in skf.split(self.X, self.y):
count += 1
X_train, X_test = self.X[train_idx], self.X[test_idx]
y_train, y_test = self.y[train_idx], self.y[test_idx]
scores = []
for reg in regs:
regscores = []
for inner_train_idx, inner_test_idx in innerskf.split(X_train, y_train):
X_in_train, X_in_test = X_train[inner_train_idx], X_train[inner_test_idx]
y_in_train, y_in_test = y_train[inner_train_idx], y_train[inner_test_idx]
if self.usepytorch:
clf = MLP(self.classifier_config, inputdim=self.featdim,
nclasses=self.nclasses, l2reg=reg,
seed=self.seed)
clf.fit(X_in_train, y_in_train,
validation_data=(X_in_test, y_in_test))
else:
clf = LogisticRegression(C=reg, random_state=self.seed)
clf.fit(X_in_train, y_in_train)
regscores.append(clf.score(X_in_test, y_in_test))
scores.append(round(100*np.mean(regscores), 2))
optreg = regs[np.argmax(scores)]
logging.info('Best param found at split {0}: l2reg = {1} \
with score {2}'.format(count, optreg, np.max(scores)))
self.devresults.append(np.max(scores))
if self.usepytorch:
clf = MLP(self.classifier_config, inputdim=self.featdim,
nclasses=self.nclasses, l2reg=optreg,
seed=self.seed)
clf.fit(X_train, y_train, validation_split=0.05)
else:
clf = LogisticRegression(C=optreg, random_state=self.seed)
clf.fit(X_train, y_train)
self.testresults.append(round(100*clf.score(X_test, y_test), 2))
devaccuracy = round(np.mean(self.devresults), 2)
testaccuracy = round(np.mean(self.testresults), 2)
return devaccuracy, testaccuracy
class KFoldClassifier(object):
"""
(train, test) split classifier : cross-validation on train.
"""
def __init__(self, train, test, config):
self.train = train
self.test = test
self.featdim = self.train['X'].shape[1]
self.nclasses = config['nclasses']
self.seed = config['seed']
self.usepytorch = config['usepytorch']
self.classifier_config = config['classifier']
self.modelname = get_classif_name(self.classifier_config, self.usepytorch)
self.k = 5 if 'kfold' not in config else config['kfold']
def run(self):
# cross-validation
logging.info('Training {0} with {1}-fold cross-validation'
.format(self.modelname, self.k))
regs = [10**t for t in range(-5, -1)] if self.usepytorch else \
[2**t for t in range(-1, 6, 1)]
skf = StratifiedKFold(n_splits=self.k, shuffle=True,
random_state=self.seed)
scores = []
for reg in regs:
scanscores = []
for train_idx, test_idx in skf.split(self.train['X'],
self.train['y']):
# Split data
X_train, y_train = self.train['X'][train_idx], self.train['y'][train_idx]
X_test, y_test = self.train['X'][test_idx], self.train['y'][test_idx]
# Train classifier
if self.usepytorch:
clf = MLP(self.classifier_config, inputdim=self.featdim,
nclasses=self.nclasses, l2reg=reg,
seed=self.seed)
clf.fit(X_train, y_train, validation_data=(X_test, y_test))
else:
clf = LogisticRegression(C=reg, random_state=self.seed)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
scanscores.append(score)
# Append mean score
scores.append(round(100*np.mean(scanscores), 2))
# evaluation
logging.info([('reg:' + str(regs[idx]), scores[idx])
for idx in range(len(scores))])
optreg = regs[np.argmax(scores)]
devaccuracy = np.max(scores)
logging.info('Cross-validation : best param found is reg = {0} \
with score {1}'.format(optreg, devaccuracy))
logging.info('Evaluating...')
if self.usepytorch:
clf = MLP(self.classifier_config, inputdim=self.featdim,
nclasses=self.nclasses, l2reg=optreg,
seed=self.seed)
clf.fit(self.train['X'], self.train['y'], validation_split=0.05)
else:
clf = LogisticRegression(C=optreg, random_state=self.seed)
clf.fit(self.train['X'], self.train['y'])
yhat = clf.predict(self.test['X'])
testaccuracy = clf.score(self.test['X'], self.test['y'])
testaccuracy = round(100*testaccuracy, 2)
return devaccuracy, testaccuracy, yhat
class SplitClassifier(object):
"""
(train, valid, test) split classifier.
"""
def __init__(self, X, y, config):
self.X = X
self.y = y
self.nclasses = config['nclasses']
self.featdim = self.X['train'].shape[1]
self.seed = config['seed']
self.usepytorch = config['usepytorch']
self.classifier_config = config['classifier']
self.cudaEfficient = False if 'cudaEfficient' not in config else \
config['cudaEfficient']
self.modelname = get_classif_name(self.classifier_config, self.usepytorch)
self.noreg = False if 'noreg' not in config else config['noreg']
self.config = config
def run(self):
logging.info('Training {0} with standard validation..'
.format(self.modelname))
regs = [10**t for t in range(-5, -1)] if self.usepytorch else \
[2**t for t in range(-2, 4, 1)]
if self.noreg:
regs = [1e-9 if self.usepytorch else 1e9]
scores = []
for reg in regs:
if self.usepytorch:
clf = MLP(self.classifier_config, inputdim=self.featdim,
nclasses=self.nclasses, l2reg=reg,
seed=self.seed, cudaEfficient=self.cudaEfficient)
# TODO: Find a hack for reducing nb epoches in SNLI
clf.fit(self.X['train'], self.y['train'],
validation_data=(self.X['valid'], self.y['valid']))
else:
clf = LogisticRegression(C=reg, random_state=self.seed)
clf.fit(self.X['train'], self.y['train'])
scores.append(round(100*clf.score(self.X['valid'],
self.y['valid']), 2))
logging.info([('reg:'+str(regs[idx]), scores[idx])
for idx in range(len(scores))])
optreg = regs[np.argmax(scores)]
devaccuracy = np.max(scores)
logging.info('Validation : best param found is reg = {0} with score \
{1}'.format(optreg, devaccuracy))
clf = LogisticRegression(C=optreg, random_state=self.seed)
logging.info('Evaluating...')
if self.usepytorch:
clf = MLP(self.classifier_config, inputdim=self.featdim,
nclasses=self.nclasses, l2reg=optreg,
seed=self.seed, cudaEfficient=self.cudaEfficient)
# TODO: Find a hack for reducing nb epoches in SNLI
clf.fit(self.X['train'], self.y['train'],
validation_data=(self.X['valid'], self.y['valid']))
else:
clf = LogisticRegression(C=optreg, random_state=self.seed)
clf.fit(self.X['train'], self.y['train'])
testaccuracy = clf.score(self.X['test'], self.y['test'])
testaccuracy = round(100*testaccuracy, 2)
return devaccuracy, testaccuracy
|