|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import, division |
|
|
|
import os |
|
import sys |
|
import logging |
|
import tensorflow as tf |
|
import tensorflow_hub as hub |
|
tf.logging.set_verbosity(0) |
|
|
|
|
|
PATH_TO_SENTEVAL = '../' |
|
PATH_TO_DATA = '../data' |
|
|
|
|
|
sys.path.insert(0, PATH_TO_SENTEVAL) |
|
import senteval |
|
|
|
|
|
session = tf.Session() |
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' |
|
|
|
|
|
def prepare(params, samples): |
|
return |
|
|
|
def batcher(params, batch): |
|
batch = [' '.join(sent) if sent != [] else '.' for sent in batch] |
|
embeddings = params['google_use'](batch) |
|
return embeddings |
|
|
|
def make_embed_fn(module): |
|
with tf.Graph().as_default(): |
|
sentences = tf.placeholder(tf.string) |
|
embed = hub.Module(module) |
|
embeddings = embed(sentences) |
|
session = tf.train.MonitoredSession() |
|
return lambda x: session.run(embeddings, {sentences: x}) |
|
|
|
|
|
encoder = make_embed_fn("https://tfhub.dev/google/universal-sentence-encoder-large/2") |
|
|
|
|
|
params_senteval = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 5} |
|
params_senteval['classifier'] = {'nhid': 0, 'optim': 'rmsprop', 'batch_size': 128, |
|
'tenacity': 3, 'epoch_size': 2} |
|
params_senteval['google_use'] = encoder |
|
|
|
|
|
logging.basicConfig(format='%(asctime)s : %(message)s', level=logging.DEBUG) |
|
|
|
if __name__ == "__main__": |
|
se = senteval.engine.SE(params_senteval, batcher, prepare) |
|
transfer_tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', |
|
'MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'SST5', 'TREC', 'MRPC', |
|
'SICKEntailment', 'SICKRelatedness', 'STSBenchmark', |
|
'Length', 'WordContent', 'Depth', 'TopConstituents', |
|
'BigramShift', 'Tense', 'SubjNumber', 'ObjNumber', |
|
'OddManOut', 'CoordinationInversion'] |
|
results = se.eval(transfer_tasks) |
|
print(results) |
|
|