|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import, division, unicode_literals |
|
|
|
""" |
|
Example of file for SkipThought in SentEval |
|
""" |
|
import logging |
|
import sys |
|
sys.setdefaultencoding('utf8') |
|
|
|
|
|
|
|
PATH_TO_SENTEVAL = '../' |
|
PATH_TO_DATA = '../data/senteval_data/' |
|
PATH_TO_SKIPTHOUGHT = '' |
|
|
|
assert PATH_TO_SKIPTHOUGHT != '', 'Download skipthought and set correct PATH' |
|
|
|
|
|
sys.path.insert(0, PATH_TO_SKIPTHOUGHT) |
|
import skipthoughts |
|
sys.path.insert(0, PATH_TO_SENTEVAL) |
|
import senteval |
|
|
|
|
|
def prepare(params, samples): |
|
return |
|
|
|
def batcher(params, batch): |
|
batch = [str(' '.join(sent), errors="ignore") if sent != [] else '.' for sent in batch] |
|
embeddings = skipthoughts.encode(params['encoder'], batch, |
|
verbose=False, use_eos=True) |
|
return embeddings |
|
|
|
|
|
|
|
params_senteval = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 10, 'batch_size': 512} |
|
params_senteval['classifier'] = {'nhid': 0, 'optim': 'adam', 'batch_size': 64, |
|
'tenacity': 5, 'epoch_size': 4} |
|
|
|
logging.basicConfig(format='%(asctime)s : %(message)s', level=logging.DEBUG) |
|
|
|
if __name__ == "__main__": |
|
|
|
params_senteval['encoder'] = skipthoughts.load_model() |
|
|
|
se = senteval.engine.SE(params_senteval, batcher, prepare) |
|
transfer_tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', |
|
'MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'SST5', 'TREC', 'MRPC', |
|
'SICKEntailment', 'SICKRelatedness', 'STSBenchmark', |
|
'Length', 'WordContent', 'Depth', 'TopConstituents', |
|
'BigramShift', 'Tense', 'SubjNumber', 'ObjNumber', |
|
'OddManOut', 'CoordinationInversion'] |
|
results = se.eval(transfer_tasks) |
|
print(results) |
|
|