pere's picture
added SentEval
cd5fcb4
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
'''
SICK Relatedness and Entailment
'''
from __future__ import absolute_import, division, unicode_literals
import os
import io
import logging
import numpy as np
from sklearn.metrics import mean_squared_error
from scipy.stats import pearsonr, spearmanr
from senteval.tools.relatedness import RelatednessPytorch
from senteval.tools.validation import SplitClassifier
class SICKEval(object):
def __init__(self, task_path, seed=1111):
logging.debug('***** Transfer task : SICK-Relatedness*****\n\n')
self.seed = seed
train = self.loadFile(os.path.join(task_path, 'SICK_train.txt'))
dev = self.loadFile(os.path.join(task_path, 'SICK_trial.txt'))
test = self.loadFile(os.path.join(task_path, 'SICK_test_annotated.txt'))
self.sick_data = {'train': train, 'dev': dev, 'test': test}
def do_prepare(self, params, prepare):
samples = self.sick_data['train']['X_A'] + \
self.sick_data['train']['X_B'] + \
self.sick_data['dev']['X_A'] + \
self.sick_data['dev']['X_B'] + \
self.sick_data['test']['X_A'] + self.sick_data['test']['X_B']
return prepare(params, samples)
def loadFile(self, fpath):
skipFirstLine = True
sick_data = {'X_A': [], 'X_B': [], 'y': []}
with io.open(fpath, 'r', encoding='utf-8') as f:
for line in f:
if skipFirstLine:
skipFirstLine = False
else:
text = line.strip().split('\t')
sick_data['X_A'].append(text[1].split())
sick_data['X_B'].append(text[2].split())
sick_data['y'].append(text[3])
sick_data['y'] = [float(s) for s in sick_data['y']]
return sick_data
def run(self, params, batcher):
sick_embed = {'train': {}, 'dev': {}, 'test': {}}
bsize = params.batch_size
for key in self.sick_data:
logging.info('Computing embedding for {0}'.format(key))
# Sort to reduce padding
sorted_corpus = sorted(zip(self.sick_data[key]['X_A'],
self.sick_data[key]['X_B'],
self.sick_data[key]['y']),
key=lambda z: (len(z[0]), len(z[1]), z[2]))
self.sick_data[key]['X_A'] = [x for (x, y, z) in sorted_corpus]
self.sick_data[key]['X_B'] = [y for (x, y, z) in sorted_corpus]
self.sick_data[key]['y'] = [z for (x, y, z) in sorted_corpus]
for txt_type in ['X_A', 'X_B']:
sick_embed[key][txt_type] = []
for ii in range(0, len(self.sick_data[key]['y']), bsize):
batch = self.sick_data[key][txt_type][ii:ii + bsize]
embeddings = batcher(params, batch)
sick_embed[key][txt_type].append(embeddings)
sick_embed[key][txt_type] = np.vstack(sick_embed[key][txt_type])
sick_embed[key]['y'] = np.array(self.sick_data[key]['y'])
logging.info('Computed {0} embeddings'.format(key))
# Train
trainA = sick_embed['train']['X_A']
trainB = sick_embed['train']['X_B']
trainF = np.c_[np.abs(trainA - trainB), trainA * trainB]
trainY = self.encode_labels(self.sick_data['train']['y'])
# Dev
devA = sick_embed['dev']['X_A']
devB = sick_embed['dev']['X_B']
devF = np.c_[np.abs(devA - devB), devA * devB]
devY = self.encode_labels(self.sick_data['dev']['y'])
# Test
testA = sick_embed['test']['X_A']
testB = sick_embed['test']['X_B']
testF = np.c_[np.abs(testA - testB), testA * testB]
testY = self.encode_labels(self.sick_data['test']['y'])
config = {'seed': self.seed, 'nclasses': 5}
clf = RelatednessPytorch(train={'X': trainF, 'y': trainY},
valid={'X': devF, 'y': devY},
test={'X': testF, 'y': testY},
devscores=self.sick_data['dev']['y'],
config=config)
devspr, yhat = clf.run()
pr = pearsonr(yhat, self.sick_data['test']['y'])[0]
sr = spearmanr(yhat, self.sick_data['test']['y'])[0]
pr = 0 if pr != pr else pr
sr = 0 if sr != sr else sr
se = mean_squared_error(yhat, self.sick_data['test']['y'])
logging.debug('Dev : Spearman {0}'.format(devspr))
logging.debug('Test : Pearson {0} Spearman {1} MSE {2} \
for SICK Relatedness\n'.format(pr, sr, se))
return {'devspearman': devspr, 'pearson': pr, 'spearman': sr, 'mse': se,
'yhat': yhat, 'ndev': len(devA), 'ntest': len(testA)}
def encode_labels(self, labels, nclass=5):
"""
Label encoding from Tree LSTM paper (Tai, Socher, Manning)
"""
Y = np.zeros((len(labels), nclass)).astype('float32')
for j, y in enumerate(labels):
for i in range(nclass):
if i+1 == np.floor(y) + 1:
Y[j, i] = y - np.floor(y)
if i+1 == np.floor(y):
Y[j, i] = np.floor(y) - y + 1
return Y
class SICKEntailmentEval(SICKEval):
def __init__(self, task_path, seed=1111):
logging.debug('***** Transfer task : SICK-Entailment*****\n\n')
self.seed = seed
train = self.loadFile(os.path.join(task_path, 'SICK_train.txt'))
dev = self.loadFile(os.path.join(task_path, 'SICK_trial.txt'))
test = self.loadFile(os.path.join(task_path, 'SICK_test_annotated.txt'))
self.sick_data = {'train': train, 'dev': dev, 'test': test}
def loadFile(self, fpath):
label2id = {'CONTRADICTION': 0, 'NEUTRAL': 1, 'ENTAILMENT': 2}
skipFirstLine = True
sick_data = {'X_A': [], 'X_B': [], 'y': []}
with io.open(fpath, 'r', encoding='utf-8') as f:
for line in f:
if skipFirstLine:
skipFirstLine = False
else:
text = line.strip().split('\t')
sick_data['X_A'].append(text[1].split())
sick_data['X_B'].append(text[2].split())
sick_data['y'].append(text[4])
sick_data['y'] = [label2id[s] for s in sick_data['y']]
return sick_data
def run(self, params, batcher):
sick_embed = {'train': {}, 'dev': {}, 'test': {}}
bsize = params.batch_size
for key in self.sick_data:
logging.info('Computing embedding for {0}'.format(key))
# Sort to reduce padding
sorted_corpus = sorted(zip(self.sick_data[key]['X_A'],
self.sick_data[key]['X_B'],
self.sick_data[key]['y']),
key=lambda z: (len(z[0]), len(z[1]), z[2]))
self.sick_data[key]['X_A'] = [x for (x, y, z) in sorted_corpus]
self.sick_data[key]['X_B'] = [y for (x, y, z) in sorted_corpus]
self.sick_data[key]['y'] = [z for (x, y, z) in sorted_corpus]
for txt_type in ['X_A', 'X_B']:
sick_embed[key][txt_type] = []
for ii in range(0, len(self.sick_data[key]['y']), bsize):
batch = self.sick_data[key][txt_type][ii:ii + bsize]
embeddings = batcher(params, batch)
sick_embed[key][txt_type].append(embeddings)
sick_embed[key][txt_type] = np.vstack(sick_embed[key][txt_type])
logging.info('Computed {0} embeddings'.format(key))
# Train
trainA = sick_embed['train']['X_A']
trainB = sick_embed['train']['X_B']
trainF = np.c_[np.abs(trainA - trainB), trainA * trainB]
trainY = np.array(self.sick_data['train']['y'])
# Dev
devA = sick_embed['dev']['X_A']
devB = sick_embed['dev']['X_B']
devF = np.c_[np.abs(devA - devB), devA * devB]
devY = np.array(self.sick_data['dev']['y'])
# Test
testA = sick_embed['test']['X_A']
testB = sick_embed['test']['X_B']
testF = np.c_[np.abs(testA - testB), testA * testB]
testY = np.array(self.sick_data['test']['y'])
config = {'nclasses': 3, 'seed': self.seed,
'usepytorch': params.usepytorch,
'classifier': params.classifier,
'nhid': params.nhid}
clf = SplitClassifier(X={'train': trainF, 'valid': devF, 'test': testF},
y={'train': trainY, 'valid': devY, 'test': testY},
config=config)
devacc, testacc = clf.run()
logging.debug('\nDev acc : {0} Test acc : {1} for \
SICK entailment\n'.format(devacc, testacc))
return {'devacc': devacc, 'acc': testacc,
'ndev': len(devA), 'ntest': len(testA)}