|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
''' |
|
SICK Relatedness and Entailment |
|
''' |
|
from __future__ import absolute_import, division, unicode_literals |
|
|
|
import os |
|
import io |
|
import logging |
|
import numpy as np |
|
|
|
from sklearn.metrics import mean_squared_error |
|
from scipy.stats import pearsonr, spearmanr |
|
|
|
from senteval.tools.relatedness import RelatednessPytorch |
|
from senteval.tools.validation import SplitClassifier |
|
|
|
class SICKEval(object): |
|
def __init__(self, task_path, seed=1111): |
|
logging.debug('***** Transfer task : SICK-Relatedness*****\n\n') |
|
self.seed = seed |
|
train = self.loadFile(os.path.join(task_path, 'SICK_train.txt')) |
|
dev = self.loadFile(os.path.join(task_path, 'SICK_trial.txt')) |
|
test = self.loadFile(os.path.join(task_path, 'SICK_test_annotated.txt')) |
|
self.sick_data = {'train': train, 'dev': dev, 'test': test} |
|
|
|
def do_prepare(self, params, prepare): |
|
samples = self.sick_data['train']['X_A'] + \ |
|
self.sick_data['train']['X_B'] + \ |
|
self.sick_data['dev']['X_A'] + \ |
|
self.sick_data['dev']['X_B'] + \ |
|
self.sick_data['test']['X_A'] + self.sick_data['test']['X_B'] |
|
return prepare(params, samples) |
|
|
|
def loadFile(self, fpath): |
|
skipFirstLine = True |
|
sick_data = {'X_A': [], 'X_B': [], 'y': []} |
|
with io.open(fpath, 'r', encoding='utf-8') as f: |
|
for line in f: |
|
if skipFirstLine: |
|
skipFirstLine = False |
|
else: |
|
text = line.strip().split('\t') |
|
sick_data['X_A'].append(text[1].split()) |
|
sick_data['X_B'].append(text[2].split()) |
|
sick_data['y'].append(text[3]) |
|
|
|
sick_data['y'] = [float(s) for s in sick_data['y']] |
|
return sick_data |
|
|
|
def run(self, params, batcher): |
|
sick_embed = {'train': {}, 'dev': {}, 'test': {}} |
|
bsize = params.batch_size |
|
|
|
for key in self.sick_data: |
|
logging.info('Computing embedding for {0}'.format(key)) |
|
|
|
sorted_corpus = sorted(zip(self.sick_data[key]['X_A'], |
|
self.sick_data[key]['X_B'], |
|
self.sick_data[key]['y']), |
|
key=lambda z: (len(z[0]), len(z[1]), z[2])) |
|
|
|
self.sick_data[key]['X_A'] = [x for (x, y, z) in sorted_corpus] |
|
self.sick_data[key]['X_B'] = [y for (x, y, z) in sorted_corpus] |
|
self.sick_data[key]['y'] = [z for (x, y, z) in sorted_corpus] |
|
|
|
for txt_type in ['X_A', 'X_B']: |
|
sick_embed[key][txt_type] = [] |
|
for ii in range(0, len(self.sick_data[key]['y']), bsize): |
|
batch = self.sick_data[key][txt_type][ii:ii + bsize] |
|
embeddings = batcher(params, batch) |
|
sick_embed[key][txt_type].append(embeddings) |
|
sick_embed[key][txt_type] = np.vstack(sick_embed[key][txt_type]) |
|
sick_embed[key]['y'] = np.array(self.sick_data[key]['y']) |
|
logging.info('Computed {0} embeddings'.format(key)) |
|
|
|
|
|
trainA = sick_embed['train']['X_A'] |
|
trainB = sick_embed['train']['X_B'] |
|
trainF = np.c_[np.abs(trainA - trainB), trainA * trainB] |
|
trainY = self.encode_labels(self.sick_data['train']['y']) |
|
|
|
|
|
devA = sick_embed['dev']['X_A'] |
|
devB = sick_embed['dev']['X_B'] |
|
devF = np.c_[np.abs(devA - devB), devA * devB] |
|
devY = self.encode_labels(self.sick_data['dev']['y']) |
|
|
|
|
|
testA = sick_embed['test']['X_A'] |
|
testB = sick_embed['test']['X_B'] |
|
testF = np.c_[np.abs(testA - testB), testA * testB] |
|
testY = self.encode_labels(self.sick_data['test']['y']) |
|
|
|
config = {'seed': self.seed, 'nclasses': 5} |
|
clf = RelatednessPytorch(train={'X': trainF, 'y': trainY}, |
|
valid={'X': devF, 'y': devY}, |
|
test={'X': testF, 'y': testY}, |
|
devscores=self.sick_data['dev']['y'], |
|
config=config) |
|
|
|
devspr, yhat = clf.run() |
|
|
|
pr = pearsonr(yhat, self.sick_data['test']['y'])[0] |
|
sr = spearmanr(yhat, self.sick_data['test']['y'])[0] |
|
pr = 0 if pr != pr else pr |
|
sr = 0 if sr != sr else sr |
|
se = mean_squared_error(yhat, self.sick_data['test']['y']) |
|
logging.debug('Dev : Spearman {0}'.format(devspr)) |
|
logging.debug('Test : Pearson {0} Spearman {1} MSE {2} \ |
|
for SICK Relatedness\n'.format(pr, sr, se)) |
|
|
|
return {'devspearman': devspr, 'pearson': pr, 'spearman': sr, 'mse': se, |
|
'yhat': yhat, 'ndev': len(devA), 'ntest': len(testA)} |
|
|
|
def encode_labels(self, labels, nclass=5): |
|
""" |
|
Label encoding from Tree LSTM paper (Tai, Socher, Manning) |
|
""" |
|
Y = np.zeros((len(labels), nclass)).astype('float32') |
|
for j, y in enumerate(labels): |
|
for i in range(nclass): |
|
if i+1 == np.floor(y) + 1: |
|
Y[j, i] = y - np.floor(y) |
|
if i+1 == np.floor(y): |
|
Y[j, i] = np.floor(y) - y + 1 |
|
return Y |
|
|
|
|
|
class SICKEntailmentEval(SICKEval): |
|
def __init__(self, task_path, seed=1111): |
|
logging.debug('***** Transfer task : SICK-Entailment*****\n\n') |
|
self.seed = seed |
|
train = self.loadFile(os.path.join(task_path, 'SICK_train.txt')) |
|
dev = self.loadFile(os.path.join(task_path, 'SICK_trial.txt')) |
|
test = self.loadFile(os.path.join(task_path, 'SICK_test_annotated.txt')) |
|
self.sick_data = {'train': train, 'dev': dev, 'test': test} |
|
|
|
def loadFile(self, fpath): |
|
label2id = {'CONTRADICTION': 0, 'NEUTRAL': 1, 'ENTAILMENT': 2} |
|
skipFirstLine = True |
|
sick_data = {'X_A': [], 'X_B': [], 'y': []} |
|
with io.open(fpath, 'r', encoding='utf-8') as f: |
|
for line in f: |
|
if skipFirstLine: |
|
skipFirstLine = False |
|
else: |
|
text = line.strip().split('\t') |
|
sick_data['X_A'].append(text[1].split()) |
|
sick_data['X_B'].append(text[2].split()) |
|
sick_data['y'].append(text[4]) |
|
sick_data['y'] = [label2id[s] for s in sick_data['y']] |
|
return sick_data |
|
|
|
def run(self, params, batcher): |
|
sick_embed = {'train': {}, 'dev': {}, 'test': {}} |
|
bsize = params.batch_size |
|
|
|
for key in self.sick_data: |
|
logging.info('Computing embedding for {0}'.format(key)) |
|
|
|
sorted_corpus = sorted(zip(self.sick_data[key]['X_A'], |
|
self.sick_data[key]['X_B'], |
|
self.sick_data[key]['y']), |
|
key=lambda z: (len(z[0]), len(z[1]), z[2])) |
|
|
|
self.sick_data[key]['X_A'] = [x for (x, y, z) in sorted_corpus] |
|
self.sick_data[key]['X_B'] = [y for (x, y, z) in sorted_corpus] |
|
self.sick_data[key]['y'] = [z for (x, y, z) in sorted_corpus] |
|
|
|
for txt_type in ['X_A', 'X_B']: |
|
sick_embed[key][txt_type] = [] |
|
for ii in range(0, len(self.sick_data[key]['y']), bsize): |
|
batch = self.sick_data[key][txt_type][ii:ii + bsize] |
|
embeddings = batcher(params, batch) |
|
sick_embed[key][txt_type].append(embeddings) |
|
sick_embed[key][txt_type] = np.vstack(sick_embed[key][txt_type]) |
|
logging.info('Computed {0} embeddings'.format(key)) |
|
|
|
|
|
trainA = sick_embed['train']['X_A'] |
|
trainB = sick_embed['train']['X_B'] |
|
trainF = np.c_[np.abs(trainA - trainB), trainA * trainB] |
|
trainY = np.array(self.sick_data['train']['y']) |
|
|
|
|
|
devA = sick_embed['dev']['X_A'] |
|
devB = sick_embed['dev']['X_B'] |
|
devF = np.c_[np.abs(devA - devB), devA * devB] |
|
devY = np.array(self.sick_data['dev']['y']) |
|
|
|
|
|
testA = sick_embed['test']['X_A'] |
|
testB = sick_embed['test']['X_B'] |
|
testF = np.c_[np.abs(testA - testB), testA * testB] |
|
testY = np.array(self.sick_data['test']['y']) |
|
|
|
config = {'nclasses': 3, 'seed': self.seed, |
|
'usepytorch': params.usepytorch, |
|
'classifier': params.classifier, |
|
'nhid': params.nhid} |
|
clf = SplitClassifier(X={'train': trainF, 'valid': devF, 'test': testF}, |
|
y={'train': trainY, 'valid': devY, 'test': testY}, |
|
config=config) |
|
|
|
devacc, testacc = clf.run() |
|
logging.debug('\nDev acc : {0} Test acc : {1} for \ |
|
SICK entailment\n'.format(devacc, testacc)) |
|
return {'devacc': devacc, 'acc': testacc, |
|
'ndev': len(devA), 'ntest': len(testA)} |
|
|