|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
''' |
|
SST - binary classification |
|
''' |
|
|
|
from __future__ import absolute_import, division, unicode_literals |
|
|
|
import os |
|
import io |
|
import logging |
|
import numpy as np |
|
|
|
from senteval.tools.validation import SplitClassifier |
|
|
|
|
|
class SSTEval(object): |
|
def __init__(self, task_path, nclasses=2, seed=1111): |
|
self.seed = seed |
|
|
|
|
|
assert nclasses in [2, 5] |
|
self.nclasses = nclasses |
|
self.task_name = 'Binary' if self.nclasses == 2 else 'Fine-Grained' |
|
logging.debug('***** Transfer task : SST %s classification *****\n\n', self.task_name) |
|
|
|
train = self.loadFile(os.path.join(task_path, 'sentiment-train')) |
|
dev = self.loadFile(os.path.join(task_path, 'sentiment-dev')) |
|
test = self.loadFile(os.path.join(task_path, 'sentiment-test')) |
|
self.sst_data = {'train': train, 'dev': dev, 'test': test} |
|
|
|
def do_prepare(self, params, prepare): |
|
samples = self.sst_data['train']['X'] + self.sst_data['dev']['X'] + \ |
|
self.sst_data['test']['X'] |
|
return prepare(params, samples) |
|
|
|
def loadFile(self, fpath): |
|
sst_data = {'X': [], 'y': []} |
|
with io.open(fpath, 'r', encoding='utf-8') as f: |
|
for line in f: |
|
if self.nclasses == 2: |
|
sample = line.strip().split('\t') |
|
sst_data['y'].append(int(sample[1])) |
|
sst_data['X'].append(sample[0].split()) |
|
elif self.nclasses == 5: |
|
sample = line.strip().split(' ', 1) |
|
sst_data['y'].append(int(sample[0])) |
|
sst_data['X'].append(sample[1].split()) |
|
assert max(sst_data['y']) == self.nclasses - 1 |
|
return sst_data |
|
|
|
def run(self, params, batcher): |
|
sst_embed = {'train': {}, 'dev': {}, 'test': {}} |
|
bsize = params.batch_size |
|
|
|
for key in self.sst_data: |
|
logging.info('Computing embedding for {0}'.format(key)) |
|
|
|
sorted_data = sorted(zip(self.sst_data[key]['X'], |
|
self.sst_data[key]['y']), |
|
key=lambda z: (len(z[0]), z[1])) |
|
self.sst_data[key]['X'], self.sst_data[key]['y'] = map(list, zip(*sorted_data)) |
|
|
|
sst_embed[key]['X'] = [] |
|
for ii in range(0, len(self.sst_data[key]['y']), bsize): |
|
batch = self.sst_data[key]['X'][ii:ii + bsize] |
|
embeddings = batcher(params, batch) |
|
sst_embed[key]['X'].append(embeddings) |
|
sst_embed[key]['X'] = np.vstack(sst_embed[key]['X']) |
|
sst_embed[key]['y'] = np.array(self.sst_data[key]['y']) |
|
logging.info('Computed {0} embeddings'.format(key)) |
|
|
|
config_classifier = {'nclasses': self.nclasses, 'seed': self.seed, |
|
'usepytorch': params.usepytorch, |
|
'classifier': params.classifier} |
|
|
|
clf = SplitClassifier(X={'train': sst_embed['train']['X'], |
|
'valid': sst_embed['dev']['X'], |
|
'test': sst_embed['test']['X']}, |
|
y={'train': sst_embed['train']['y'], |
|
'valid': sst_embed['dev']['y'], |
|
'test': sst_embed['test']['y']}, |
|
config=config_classifier) |
|
|
|
devacc, testacc = clf.run() |
|
logging.debug('\nDev acc : {0} Test acc : {1} for \ |
|
SST {2} classification\n'.format(devacc, testacc, self.task_name)) |
|
|
|
return {'devacc': devacc, 'acc': testacc, |
|
'ndev': len(sst_embed['dev']['X']), |
|
'ntest': len(sst_embed['test']['X'])} |
|
|