|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
''' |
|
TREC question-type classification |
|
''' |
|
|
|
from __future__ import absolute_import, division, unicode_literals |
|
|
|
import os |
|
import io |
|
import logging |
|
import numpy as np |
|
|
|
from senteval.tools.validation import KFoldClassifier |
|
|
|
|
|
class TRECEval(object): |
|
def __init__(self, task_path, seed=1111): |
|
logging.info('***** Transfer task : TREC *****\n\n') |
|
self.seed = seed |
|
self.train = self.loadFile(os.path.join(task_path, 'train_5500.label')) |
|
self.test = self.loadFile(os.path.join(task_path, 'TREC_10.label')) |
|
|
|
def do_prepare(self, params, prepare): |
|
samples = self.train['X'] + self.test['X'] |
|
return prepare(params, samples) |
|
|
|
def loadFile(self, fpath): |
|
trec_data = {'X': [], 'y': []} |
|
tgt2idx = {'ABBR': 0, 'DESC': 1, 'ENTY': 2, |
|
'HUM': 3, 'LOC': 4, 'NUM': 5} |
|
with io.open(fpath, 'r', encoding='latin-1') as f: |
|
for line in f: |
|
target, sample = line.strip().split(':', 1) |
|
sample = sample.split(' ', 1)[1].split() |
|
assert target in tgt2idx, target |
|
trec_data['X'].append(sample) |
|
trec_data['y'].append(tgt2idx[target]) |
|
return trec_data |
|
|
|
def run(self, params, batcher): |
|
train_embeddings, test_embeddings = [], [] |
|
|
|
|
|
sorted_corpus_train = sorted(zip(self.train['X'], self.train['y']), |
|
key=lambda z: (len(z[0]), z[1])) |
|
train_samples = [x for (x, y) in sorted_corpus_train] |
|
train_labels = [y for (x, y) in sorted_corpus_train] |
|
|
|
sorted_corpus_test = sorted(zip(self.test['X'], self.test['y']), |
|
key=lambda z: (len(z[0]), z[1])) |
|
test_samples = [x for (x, y) in sorted_corpus_test] |
|
test_labels = [y for (x, y) in sorted_corpus_test] |
|
|
|
|
|
for ii in range(0, len(train_labels), params.batch_size): |
|
batch = train_samples[ii:ii + params.batch_size] |
|
embeddings = batcher(params, batch) |
|
train_embeddings.append(embeddings) |
|
train_embeddings = np.vstack(train_embeddings) |
|
logging.info('Computed train embeddings') |
|
|
|
|
|
for ii in range(0, len(test_labels), params.batch_size): |
|
batch = test_samples[ii:ii + params.batch_size] |
|
embeddings = batcher(params, batch) |
|
test_embeddings.append(embeddings) |
|
test_embeddings = np.vstack(test_embeddings) |
|
logging.info('Computed test embeddings') |
|
|
|
config_classifier = {'nclasses': 6, 'seed': self.seed, |
|
'usepytorch': params.usepytorch, |
|
'classifier': params.classifier, |
|
'kfold': params.kfold} |
|
clf = KFoldClassifier({'X': train_embeddings, |
|
'y': np.array(train_labels)}, |
|
{'X': test_embeddings, |
|
'y': np.array(test_labels)}, |
|
config_classifier) |
|
devacc, testacc, _ = clf.run() |
|
logging.debug('\nDev acc : {0} Test acc : {1} \ |
|
for TREC\n'.format(devacc, testacc)) |
|
return {'devacc': devacc, 'acc': testacc, |
|
'ndev': len(self.train['X']), 'ntest': len(self.test['X'])} |
|
|