# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
from __future__ import absolute_import, division, unicode_literals
import sys
import io
import numpy as np
import logging
# Set PATHs
PATH_TO_SENTEVAL = '../'
PATH_TO_DATA = '../data'
# PATH_TO_VEC = 'glove/glove.840B.300d.txt'
PATH_TO_VEC = 'fasttext/crawl-300d-2M.vec'
# import SentEval
sys.path.insert(0, PATH_TO_SENTEVAL)
import senteval
# Create dictionary
def create_dictionary(sentences, threshold=0):
words = {}
for s in sentences:
for word in s:
words[word] = words.get(word, 0) + 1
if threshold > 0:
newwords = {}
for word in words:
if words[word] >= threshold:
newwords[word] = words[word]
words = newwords
words[''] = 1e9 + 4
words[''] = 1e9 + 3
words['
'] = 1e9 + 2 sorted_words = sorted(words.items(), key=lambda x: -x[1]) # inverse sort id2word = [] word2id = {} for i, (w, _) in enumerate(sorted_words): id2word.append(w) word2id[w] = i return id2word, word2id # Get word vectors from vocabulary (glove, word2vec, fasttext ..) def get_wordvec(path_to_vec, word2id): word_vec = {} with io.open(path_to_vec, 'r', encoding='utf-8') as f: # if word2vec or fasttext file : skip first line "next(f)" for line in f: word, vec = line.split(' ', 1) if word in word2id: word_vec[word] = np.fromstring(vec, sep=' ') logging.info('Found {0} words with word vectors, out of \ {1} words'.format(len(word_vec), len(word2id))) return word_vec # SentEval prepare and batcher def prepare(params, samples): _, params.word2id = create_dictionary(samples) params.word_vec = get_wordvec(PATH_TO_VEC, params.word2id) params.wvec_dim = 300 return def batcher(params, batch): batch = [sent if sent != [] else ['.'] for sent in batch] embeddings = [] for sent in batch: sentvec = [] for word in sent: if word in params.word_vec: sentvec.append(params.word_vec[word]) if not sentvec: vec = np.zeros(params.wvec_dim) sentvec.append(vec) sentvec = np.mean(sentvec, 0) embeddings.append(sentvec) embeddings = np.vstack(embeddings) return embeddings # Set params for SentEval params_senteval = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 5} params_senteval['classifier'] = {'nhid': 0, 'optim': 'rmsprop', 'batch_size': 128, 'tenacity': 3, 'epoch_size': 2} # Set up logger logging.basicConfig(format='%(asctime)s : %(message)s', level=logging.DEBUG) if __name__ == "__main__": se = senteval.engine.SE(params_senteval, batcher, prepare) transfer_tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'SST5', 'TREC', 'MRPC', 'SICKEntailment', 'SICKRelatedness', 'STSBenchmark', 'Length', 'WordContent', 'Depth', 'TopConstituents', 'BigramShift', 'Tense', 'SubjNumber', 'ObjNumber', 'OddManOut', 'CoordinationInversion'] results = se.eval(transfer_tasks) print(results)