# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # """ Clone GenSen repo here: https://github.com/Maluuba/gensen.git And follow instructions for loading the model used in batcher """ from __future__ import absolute_import, division, unicode_literals import sys import logging # import GenSen package from gensen import GenSen, GenSenSingle # Set PATHs PATH_TO_SENTEVAL = '../' PATH_TO_DATA = '../data' # import SentEval sys.path.insert(0, PATH_TO_SENTEVAL) import senteval # SentEval prepare and batcher def prepare(params, samples): return def batcher(params, batch): batch = [' '.join(sent) if sent != [] else '.' for sent in batch] _, reps_h_t = gensen.get_representation( sentences, pool='last', return_numpy=True, tokenize=True ) embeddings = reps_h_t return embeddings # Load GenSen model gensen_1 = GenSenSingle( model_folder='../data/models', filename_prefix='nli_large_bothskip', pretrained_emb='../data/embedding/glove.840B.300d.h5' ) gensen_2 = GenSenSingle( model_folder='../data/models', filename_prefix='nli_large_bothskip_parse', pretrained_emb='../data/embedding/glove.840B.300d.h5' ) gensen_encoder = GenSen(gensen_1, gensen_2) reps_h, reps_h_t = gensen.get_representation( sentences, pool='last', return_numpy=True, tokenize=True ) # Set params for SentEval params_senteval = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 5} params_senteval['classifier'] = {'nhid': 0, 'optim': 'rmsprop', 'batch_size': 128, 'tenacity': 3, 'epoch_size': 2} params_senteval['gensen'] = gensen_encoder # Set up logger logging.basicConfig(format='%(asctime)s : %(message)s', level=logging.DEBUG) if __name__ == "__main__": se = senteval.engine.SE(params_senteval, batcher, prepare) transfer_tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'SST5', 'TREC', 'MRPC', 'SICKEntailment', 'SICKRelatedness', 'STSBenchmark', 'Length', 'WordContent', 'Depth', 'TopConstituents', 'BigramShift', 'Tense', 'SubjNumber', 'ObjNumber', 'OddManOut', 'CoordinationInversion'] results = se.eval(transfer_tasks) print(results)