Update handler.py
Browse files- handler.py +9 -0
handler.py
CHANGED
|
@@ -4,6 +4,10 @@ Model: nvidia/Eagle2.5-8B
|
|
| 4 |
|
| 5 |
For ProofPath video assessment - long video understanding with up to 512 frames.
|
| 6 |
Ideal for full rubric-based video grading in a single call.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"""
|
| 8 |
|
| 9 |
from typing import Dict, List, Any, Optional, Union
|
|
@@ -28,6 +32,9 @@ class EndpointHandler:
|
|
| 28 |
# The repository only contains handler.py and requirements.txt
|
| 29 |
model_id = "nvidia/Eagle2.5-8B"
|
| 30 |
|
|
|
|
|
|
|
|
|
|
| 31 |
# Determine device
|
| 32 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 33 |
|
|
@@ -37,6 +44,7 @@ class EndpointHandler:
|
|
| 37 |
self.processor = Qwen2VLProcessor.from_pretrained(
|
| 38 |
model_id,
|
| 39 |
trust_remote_code=True,
|
|
|
|
| 40 |
)
|
| 41 |
|
| 42 |
# Set padding side for batch processing
|
|
@@ -49,6 +57,7 @@ class EndpointHandler:
|
|
| 49 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 50 |
attn_implementation="flash_attention_2" if torch.cuda.is_available() else "sdpa",
|
| 51 |
device_map="auto" if torch.cuda.is_available() else None,
|
|
|
|
| 52 |
)
|
| 53 |
|
| 54 |
if not torch.cuda.is_available():
|
|
|
|
| 4 |
|
| 5 |
For ProofPath video assessment - long video understanding with up to 512 frames.
|
| 6 |
Ideal for full rubric-based video grading in a single call.
|
| 7 |
+
|
| 8 |
+
REQUIREMENTS:
|
| 9 |
+
1. Set HF_TOKEN environment variable (model is gated)
|
| 10 |
+
2. Accept license at https://huggingface.co/nvidia/Eagle2.5-8B
|
| 11 |
"""
|
| 12 |
|
| 13 |
from typing import Dict, List, Any, Optional, Union
|
|
|
|
| 32 |
# The repository only contains handler.py and requirements.txt
|
| 33 |
model_id = "nvidia/Eagle2.5-8B"
|
| 34 |
|
| 35 |
+
# Get HF token from environment for gated model access
|
| 36 |
+
hf_token = os.environ.get("HF_TOKEN") or os.environ.get("HUGGING_FACE_HUB_TOKEN")
|
| 37 |
+
|
| 38 |
# Determine device
|
| 39 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 40 |
|
|
|
|
| 44 |
self.processor = Qwen2VLProcessor.from_pretrained(
|
| 45 |
model_id,
|
| 46 |
trust_remote_code=True,
|
| 47 |
+
token=hf_token,
|
| 48 |
)
|
| 49 |
|
| 50 |
# Set padding side for batch processing
|
|
|
|
| 57 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
| 58 |
attn_implementation="flash_attention_2" if torch.cuda.is_available() else "sdpa",
|
| 59 |
device_map="auto" if torch.cuda.is_available() else None,
|
| 60 |
+
token=hf_token,
|
| 61 |
)
|
| 62 |
|
| 63 |
if not torch.cuda.is_available():
|