File size: 16,127 Bytes
0bd64d1
 
 
 
b7720c4
 
 
0bd64d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7720c4
0bd64d1
 
 
 
 
 
b7720c4
 
 
0bd64d1
b7720c4
 
 
 
0bd64d1
b7720c4
 
0bd64d1
b7720c4
 
 
 
 
 
0bd64d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7720c4
0bd64d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7720c4
0bd64d1
b7720c4
0bd64d1
 
b7720c4
0bd64d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7720c4
0bd64d1
 
 
b7720c4
0bd64d1
 
 
 
 
b7720c4
0bd64d1
 
 
b7720c4
0bd64d1
 
 
 
b7720c4
0bd64d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7720c4
0bd64d1
 
 
 
 
 
 
 
 
 
 
b7720c4
 
0bd64d1
 
 
 
b7720c4
 
 
 
 
0bd64d1
b7720c4
 
 
0bd64d1
 
b7720c4
 
 
 
 
 
 
 
0bd64d1
b7720c4
 
0bd64d1
 
b7720c4
0bd64d1
b7720c4
 
 
 
0bd64d1
b7720c4
0bd64d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7720c4
 
0bd64d1
 
 
 
b7720c4
 
 
 
0bd64d1
b7720c4
 
0bd64d1
b7720c4
 
 
 
0bd64d1
 
b7720c4
 
0bd64d1
 
b7720c4
0bd64d1
 
 
b7720c4
0bd64d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7720c4
0bd64d1
b7720c4
0bd64d1
 
 
 
 
 
b7720c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bd64d1
b7720c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bd64d1
 
b7720c4
 
 
 
0bd64d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7720c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
"""
SAM 3 Custom Inference Handler for Hugging Face Inference Endpoints
Model: facebook/sam3

Using the official sam3 package from Meta (pip install sam3)
NOT the transformers integration.

For ProofPath video assessment - text-prompted segmentation to find UI elements.
Supports text prompts like "Save button", "dropdown menu", "text input field".

KEY CAPABILITIES:
- Text-to-segment: Find ALL instances of a concept (e.g., "button" → all buttons)
- Promptable Concept Segmentation (PCS): 270K unique concepts
- Video tracking: Consistent object IDs across frames
- Presence token: Discriminates similar elements ("player in white" vs "player in red")

REQUIREMENTS:
1. Set HF_TOKEN environment variable (model is gated)
2. Accept license at https://huggingface.co/facebook/sam3
"""

from typing import Dict, List, Any, Optional, Union
import torch
import numpy as np
import base64
import io
import os


class EndpointHandler:
    def __init__(self, path: str = ""):
        """
        Initialize SAM 3 model for text-prompted segmentation.
        Uses the official sam3 package from Meta.
        
        Args:
            path: Path to the model directory (ignored - we load from HF hub)
        """
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        # Import from official sam3 package
        from sam3.model_builder import build_sam3_image_model
        from sam3.model.sam3_image_processor import Sam3Processor
        
        # Build model - this downloads from HuggingFace automatically
        # Requires HF_TOKEN for gated model access
        self.model = build_sam3_image_model()
        self.processor = Sam3Processor(self.model)
        
        # Video model will be loaded lazily
        self._video_predictor = None
    
    def _get_video_predictor(self):
        """Lazy load video predictor only when needed."""
        if self._video_predictor is None:
            from sam3.model_builder import build_sam3_video_predictor
            self._video_predictor = build_sam3_video_predictor()
        return self._video_predictor
    
    def _load_image(self, image_data: Any):
        """Load image from various formats."""
        from PIL import Image
        import requests
        
        if isinstance(image_data, Image.Image):
            return image_data.convert('RGB')
        elif isinstance(image_data, str):
            if image_data.startswith(('http://', 'https://')):
                response = requests.get(image_data, stream=True)
                return Image.open(response.raw).convert('RGB')
            elif image_data.startswith('data:'):
                header, encoded = image_data.split(',', 1)
                image_bytes = base64.b64decode(encoded)
                return Image.open(io.BytesIO(image_bytes)).convert('RGB')
            else:
                # Assume base64 encoded
                image_bytes = base64.b64decode(image_data)
                return Image.open(io.BytesIO(image_bytes)).convert('RGB')
        elif isinstance(image_data, bytes):
            return Image.open(io.BytesIO(image_data)).convert('RGB')
        else:
            raise ValueError(f"Unsupported image input type: {type(image_data)}")
    
    def _load_video_frames(self, video_data: Any, max_frames: int = 100, fps: float = 2.0) -> tuple:
        """Load video frames from various formats."""
        import cv2
        from PIL import Image
        import tempfile
        
        # Decode to temp file if needed
        if isinstance(video_data, str):
            if video_data.startswith(('http://', 'https://')):
                import requests
                response = requests.get(video_data, stream=True)
                with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as f:
                    for chunk in response.iter_content(chunk_size=8192):
                        f.write(chunk)
                    video_path = f.name
            elif video_data.startswith('data:'):
                header, encoded = video_data.split(',', 1)
                video_bytes = base64.b64decode(encoded)
                with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as f:
                    f.write(video_bytes)
                    video_path = f.name
            else:
                video_bytes = base64.b64decode(video_data)
                with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as f:
                    f.write(video_bytes)
                    video_path = f.name
        elif isinstance(video_data, bytes):
            with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as f:
                f.write(video_data)
                video_path = f.name
        else:
            raise ValueError(f"Unsupported video input type: {type(video_data)}")
        
        try:
            cap = cv2.VideoCapture(video_path)
            video_fps = cap.get(cv2.CAP_PROP_FPS)
            total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
            duration = total_frames / video_fps if video_fps > 0 else 0
            
            # Calculate frames to sample
            target_frames = min(max_frames, int(duration * fps), total_frames)
            if target_frames <= 0:
                target_frames = min(max_frames, total_frames)
            
            frame_indices = np.linspace(0, total_frames - 1, target_frames, dtype=int)
            
            frames = []
            for idx in frame_indices:
                cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
                ret, frame = cap.read()
                if ret:
                    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    pil_image = Image.fromarray(frame_rgb)
                    frames.append(pil_image)
            
            cap.release()
            
            metadata = {
                "duration": duration,
                "total_frames": total_frames,
                "sampled_frames": len(frames),
                "video_fps": video_fps
            }
            
            return video_path, metadata
            
        except Exception as e:
            if os.path.exists(video_path):
                os.unlink(video_path)
            raise e
    
    def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Process image or video with SAM 3 for text-prompted segmentation.
        
        INPUT FORMATS:
        
        1. Single image with text prompt (find all instances):
        {
            "inputs": <image_url_or_base64>,
            "parameters": {
                "prompt": "Save button",
                "return_masks": true
            }
        }
        
        2. Single image with multiple text prompts:
        {
            "inputs": <image_url_or_base64>,
            "parameters": {
                "prompts": ["button", "text field", "dropdown"]
            }
        }
        
        3. Video with text prompt (track all instances):
        {
            "inputs": <video_url_or_base64>,
            "parameters": {
                "mode": "video",
                "prompt": "Submit button",
                "max_frames": 100
            }
        }
        
        4. ProofPath UI element detection:
        {
            "inputs": <screenshot_base64>,
            "parameters": {
                "mode": "ui_elements",
                "elements": ["Save button", "Cancel button", "text input"]
            }
        }
        
        OUTPUT FORMAT:
        {
            "results": [
                {
                    "prompt": "Save button",
                    "instances": [
                        {
                            "box": [x1, y1, x2, y2],
                            "score": 0.95,
                            "mask": "<base64_png>" // if return_masks=true
                        }
                    ]
                }
            ],
            "image_size": {"width": 1920, "height": 1080}
        }
        """
        inputs = data.get("inputs")
        params = data.get("parameters", {})
        
        if inputs is None:
            raise ValueError("No inputs provided")
        
        mode = params.get("mode", "image")
        
        if mode == "video":
            return self._process_video(inputs, params)
        elif mode == "ui_elements":
            return self._process_ui_elements(inputs, params)
        else:
            return self._process_single_image(inputs, params)
    
    def _process_single_image(self, image_data: Any, params: Dict) -> Dict[str, Any]:
        """Process a single image with text prompts using official sam3 API."""
        image = self._load_image(image_data)
        
        return_masks = params.get("return_masks", True)
        
        # Get prompts
        prompt = params.get("prompt")
        prompts = params.get("prompts", [prompt] if prompt else [])
        
        if not prompts:
            raise ValueError("No text prompt(s) provided")
        
        # Set the image in processor
        inference_state = self.processor.set_image(image)
        
        results = []
        
        for text_prompt in prompts:
            # Use official sam3 API
            output = self.processor.set_text_prompt(
                state=inference_state, 
                prompt=text_prompt
            )
            
            masks = output.get("masks", [])
            boxes = output.get("boxes", [])
            scores = output.get("scores", [])
            
            instances = []
            
            # Convert tensors to lists
            if hasattr(boxes, 'tolist'):
                boxes = boxes.tolist()
            if hasattr(scores, 'tolist'):
                scores = scores.tolist()
            
            for i in range(len(boxes)):
                instance = {
                    "box": boxes[i] if i < len(boxes) else None,
                    "score": float(scores[i]) if i < len(scores) else 0.0
                }
                
                if return_masks and masks is not None and i < len(masks):
                    # Encode mask as base64 PNG
                    mask = masks[i]
                    if hasattr(mask, 'cpu'):
                        mask = mask.cpu().numpy()
                    mask_uint8 = (mask * 255).astype(np.uint8)
                    from PIL import Image as PILImage
                    mask_img = PILImage.fromarray(mask_uint8)
                    buffer = io.BytesIO()
                    mask_img.save(buffer, format='PNG')
                    instance["mask"] = base64.b64encode(buffer.getvalue()).decode('utf-8')
                
                instances.append(instance)
            
            results.append({
                "prompt": text_prompt,
                "instances": instances,
                "count": len(instances)
            })
        
        return {
            "results": results,
            "image_size": {"width": image.width, "height": image.height}
        }
    
    def _process_ui_elements(self, image_data: Any, params: Dict) -> Dict[str, Any]:
        """
        ProofPath-specific mode: Detect multiple UI element types in a screenshot.
        Returns structured data for each element type with bounding boxes.
        """
        image = self._load_image(image_data)
        
        elements = params.get("elements", [])
        if not elements:
            # Default UI elements to look for
            elements = ["button", "text input", "dropdown", "checkbox", "link"]
        
        # Set the image once
        inference_state = self.processor.set_image(image)
        
        all_detections = {}
        
        for element_type in elements:
            output = self.processor.set_text_prompt(
                state=inference_state, 
                prompt=element_type
            )
            
            boxes = output.get("boxes", [])
            scores = output.get("scores", [])
            
            if hasattr(boxes, 'tolist'):
                boxes = boxes.tolist()
            if hasattr(scores, 'tolist'):
                scores = scores.tolist()
            
            detections = []
            for i in range(len(boxes)):
                box = boxes[i]
                detections.append({
                    "box": box,
                    "score": float(scores[i]) if i < len(scores) else 0.0,
                    "center": [
                        (box[0] + box[2]) / 2,
                        (box[1] + box[3]) / 2
                    ] if len(box) >= 4 else None
                })
            
            all_detections[element_type] = {
                "count": len(detections),
                "instances": detections
            }
        
        return {
            "ui_elements": all_detections,
            "image_size": {"width": image.width, "height": image.height},
            "total_elements": sum(d["count"] for d in all_detections.values())
        }
    
    def _process_video(self, video_data: Any, params: Dict) -> Dict[str, Any]:
        """
        Process video with SAM3 Video for text-prompted tracking.
        Uses the official sam3 video predictor API.
        """
        video_predictor = self._get_video_predictor()
        
        prompt = params.get("prompt")
        if not prompt:
            raise ValueError("Text prompt required for video mode")
        
        max_frames = params.get("max_frames", 100)
        
        # Load video to temp path
        video_path, video_metadata = self._load_video_frames(video_data, max_frames)
        
        try:
            # Start video session
            response = video_predictor.handle_request(
                request=dict(
                    type="start_session",
                    resource_path=video_path,
                )
            )
            session_id = response.get("session_id")
            
            # Add text prompt at frame 0
            response = video_predictor.handle_request(
                request=dict(
                    type="add_prompt",
                    session_id=session_id,
                    frame_index=0,
                    text=prompt,
                )
            )
            
            output = response.get("outputs", {})
            
            # Get tracked objects
            object_ids = output.get("object_ids", [])
            if hasattr(object_ids, 'tolist'):
                object_ids = object_ids.tolist()
            
            # Propagate through video
            propagate_response = video_predictor.handle_request(
                request=dict(
                    type="propagate",
                    session_id=session_id,
                )
            )
            
            # Collect results per frame
            per_frame_results = propagate_response.get("per_frame_outputs", {})
            
            # Convert to serializable format
            tracks = []
            for obj_id in object_ids:
                track = {
                    "object_id": int(obj_id) if hasattr(obj_id, 'item') else obj_id,
                    "frames": []
                }
                tracks.append(track)
            
            return {
                "prompt": prompt,
                "video_metadata": video_metadata,
                "objects_tracked": len(object_ids),
                "tracks": tracks,
                "session_id": session_id
            }
            
        finally:
            # Clean up temp file
            if os.path.exists(video_path):
                os.unlink(video_path)


# For testing locally
if __name__ == "__main__":
    handler = EndpointHandler()
    
    # Test with a sample image URL
    test_data = {
        "inputs": "http://images.cocodataset.org/val2017/000000077595.jpg",
        "parameters": {
            "prompt": "ear",
            "return_masks": False
        }
    }
    
    result = handler(test_data)
    print(f"Found {result['results'][0]['count']} instances of '{result['results'][0]['prompt']}'")
    for inst in result['results'][0]['instances']:
        print(f"  Box: {inst['box']}, Score: {inst['score']:.3f}")