File size: 9,937 Bytes
c71b705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32936bc
 
 
c71b705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
"""
SigLIP 2 Custom Inference Handler for Hugging Face Inference Endpoints
Model: google/siglip2-so400m-patch14-384 (Best balance of performance/quality)

For ProofPath video assessment - identifies objects, tools, and actions in video frames.
"""

from typing import Dict, List, Any, Union
import torch
import numpy as np
import base64
import io
from PIL import Image


class EndpointHandler:
    def __init__(self, path: str = ""):
        """
        Initialize SigLIP 2 model for image/frame classification and embedding.
        
        Args:
            path: Path to the model directory (provided by HF Inference Endpoints)
        """
        from transformers import AutoProcessor, AutoModel
        
        # Always load from the official Google model on HuggingFace Hub
        # (path points to /repository which is our custom handler, not the model weights)
        model_id = "google/siglip2-so400m-patch14-384"
        
        # Determine device
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        # Load processor and model
        self.processor = AutoProcessor.from_pretrained(model_id)
        self.model = AutoModel.from_pretrained(
            model_id,
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
            device_map="auto" if torch.cuda.is_available() else None,
            attn_implementation="sdpa"  # Use scaled dot product attention
        )
        
        if not torch.cuda.is_available():
            self.model = self.model.to(self.device)
        
        self.model.eval()
        
    def _decode_image(self, image_data: Any) -> Image.Image:
        """
        Decode image from various input formats.
        
        Supports:
        - Base64 encoded image
        - URL to image
        - PIL Image
        - Raw bytes
        """
        import requests
        
        if isinstance(image_data, Image.Image):
            return image_data
        elif isinstance(image_data, str):
            if image_data.startswith(('http://', 'https://')):
                # URL
                response = requests.get(image_data, stream=True)
                return Image.open(response.raw).convert('RGB')
            elif image_data.startswith('data:'):
                # Data URL
                header, encoded = image_data.split(',', 1)
                image_bytes = base64.b64decode(encoded)
                return Image.open(io.BytesIO(image_bytes)).convert('RGB')
            else:
                # Assume base64
                image_bytes = base64.b64decode(image_data)
                return Image.open(io.BytesIO(image_bytes)).convert('RGB')
        elif isinstance(image_data, bytes):
            return Image.open(io.BytesIO(image_data)).convert('RGB')
        else:
            raise ValueError(f"Unsupported image input type: {type(image_data)}")
    
    def _process_batch(
        self,
        images: List[Image.Image],
        texts: List[str] = None
    ) -> Dict[str, torch.Tensor]:
        """Process a batch of images and optional texts."""
        if texts:
            # SigLIP 2 requires specific padding for text
            inputs = self.processor(
                images=images,
                text=texts,
                padding="max_length",
                max_length=64,
                return_tensors="pt"
            )
        else:
            inputs = self.processor(
                images=images,
                return_tensors="pt"
            )
        
        return {k: v.to(self.model.device) for k, v in inputs.items()}
    
    def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Process image(s) for classification or embedding extraction.
        
        Expected input formats:
        
        1. Zero-shot classification:
        {
            "inputs": <image_data>,  # single image or list of images
            "parameters": {
                "candidate_labels": ["label1", "label2", ...],
                "hypothesis_template": "This is a photo of {}."  # Optional
            }
        }
        
        2. Image embedding only:
        {
            "inputs": <image_data>,
            "parameters": {
                "mode": "embedding"
            }
        }
        
        3. Image-text similarity:
        {
            "inputs": {
                "images": [<image1>, <image2>, ...],
                "texts": ["text1", "text2", ...]
            },
            "parameters": {
                "mode": "similarity"
            }
        }
        
        Returns for classification:
        {
            "labels": ["label1", "label2"],
            "scores": [0.85, 0.12],
            "predictions": [{"label": "label1", "score": 0.85}, ...]
        }
        
        Returns for embedding:
        {
            "image_embeddings": [[...], ...],
            "embedding_shape": [batch, hidden_dim]
        }
        
        Returns for similarity:
        {
            "similarity_matrix": [[...], ...],
            "shape": [num_images, num_texts]
        }
        """
        inputs = data.get("inputs")
        if inputs is None:
            inputs = data.get("image") or data.get("images")
        if inputs is None:
            raise ValueError("No input provided. Use 'inputs', 'image', or 'images' key.")
        
        params = data.get("parameters", {})
        mode = params.get("mode", "classification")
        
        try:
            # Handle different modes
            if mode == "embedding":
                return self._extract_embeddings(inputs)
            elif mode == "similarity":
                return self._compute_similarity(inputs, params)
            else:
                # Default: zero-shot classification
                return self._classify(inputs, params)
                
        except Exception as e:
            return {"error": str(e), "error_type": type(e).__name__}
    
    def _classify(self, inputs: Any, params: Dict) -> Dict[str, Any]:
        """Zero-shot image classification."""
        candidate_labels = params.get("candidate_labels", [])
        if not candidate_labels:
            raise ValueError("candidate_labels required for classification mode")
        
        hypothesis_template = params.get("hypothesis_template", "This is a photo of {}.")
        
        # Decode image(s)
        if isinstance(inputs, list):
            images = [self._decode_image(img) for img in inputs]
        else:
            images = [self._decode_image(inputs)]
        
        # Create text prompts from labels
        texts = [hypothesis_template.format(label) for label in candidate_labels]
        
        results = []
        for image in images:
            # Process single image with all candidate labels
            processed = self._process_batch([image] * len(texts), texts)
            
            with torch.no_grad():
                outputs = self.model(**processed)
            
            # SigLIP uses sigmoid, not softmax
            logits_per_image = outputs.logits_per_image
            probs = torch.sigmoid(logits_per_image[0])  # Shape: [num_labels]
            
            # Sort by probability
            sorted_indices = probs.argsort(descending=True)
            
            predictions = []
            for idx in sorted_indices:
                predictions.append({
                    "label": candidate_labels[idx.item()],
                    "score": float(probs[idx].item())
                })
            
            results.append({
                "labels": [p["label"] for p in predictions],
                "scores": [p["score"] for p in predictions],
                "predictions": predictions
            })
        
        # Return single result if single input
        if len(results) == 1:
            return results[0]
        return {"results": results}
    
    def _extract_embeddings(self, inputs: Any) -> Dict[str, Any]:
        """Extract image embeddings only."""
        # Decode image(s)
        if isinstance(inputs, list):
            images = [self._decode_image(img) for img in inputs]
        else:
            images = [self._decode_image(inputs)]
        
        processed = self.processor(images=images, return_tensors="pt")
        processed = {k: v.to(self.model.device) for k, v in processed.items()}
        
        with torch.no_grad():
            # Get vision features directly
            vision_outputs = self.model.get_image_features(**processed)
        
        embeddings = vision_outputs.cpu().numpy().tolist()
        
        return {
            "image_embeddings": embeddings,
            "embedding_shape": list(vision_outputs.shape)
        }
    
    def _compute_similarity(self, inputs: Dict, params: Dict) -> Dict[str, Any]:
        """Compute image-text similarity matrix."""
        images_data = inputs.get("images", [])
        texts = inputs.get("texts", [])
        
        if not images_data or not texts:
            raise ValueError("Both 'images' and 'texts' required for similarity mode")
        
        # Decode images
        images = [self._decode_image(img) for img in images_data]
        
        # Process with padding for SigLIP 2
        processed = self.processor(
            images=images,
            text=texts,
            padding="max_length",
            max_length=64,
            return_tensors="pt"
        )
        processed = {k: v.to(self.model.device) for k, v in processed.items()}
        
        with torch.no_grad():
            outputs = self.model(**processed)
        
        # Get similarity matrix
        similarity = outputs.logits_per_image  # [num_images, num_texts]
        probs = torch.sigmoid(similarity)
        
        return {
            "similarity_matrix": probs.cpu().numpy().tolist(),
            "shape": list(probs.shape),
            "logits": similarity.cpu().numpy().tolist()
        }