File size: 6,723 Bytes
db56a5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Import libraries
import tkinter as tk
from tkinter import ttk

from keras.layers import TextVectorization
import re
import tensorflow.strings as tf_strings
import json
import string
from keras.models import load_model
import tensorflow as tf
from keras.preprocessing.text import tokenizer_from_json
from keras.utils import pad_sequences
import numpy as np

# English to Spanish translation
strip_chars = string.punctuation + "¿"
strip_chars = strip_chars.replace("[", "")
strip_chars = strip_chars.replace("]", "")

def custom_standardization(input_string):
    lowercase = tf_strings.lower(input_string)
    return tf_strings.regex_replace(lowercase, f"[{re.escape(strip_chars)}]", "")

# Load the English vectorization layer configuration
with open('eng_vectorization_config.json') as json_file:
    eng_vectorization_config = json.load(json_file)

# Recreate the English vectorization layer with basic configuration
eng_vectorization = TextVectorization(
    max_tokens=eng_vectorization_config['max_tokens'],
    output_mode=eng_vectorization_config['output_mode'],
    output_sequence_length=eng_vectorization_config['output_sequence_length']
)

# Apply the custom standardization function
eng_vectorization.standardize = custom_standardization

# Load the Spanish vectorization layer configuration
with open('spa_vectorization_config.json') as json_file:
    spa_vectorization_config = json.load(json_file)

# Recreate the Spanish vectorization layer with basic configuration
spa_vectorization = TextVectorization(
    max_tokens=spa_vectorization_config['max_tokens'],
    output_mode=spa_vectorization_config['output_mode'],
    output_sequence_length=spa_vectorization_config['output_sequence_length'],
    standardize=custom_standardization
)

# Load and set the English vocabulary
with open('eng_vocab.json') as json_file:
    eng_vocab = json.load(json_file)
    eng_vectorization.set_vocabulary(eng_vocab)

# Load and set the Spanish vocabulary
with open('spa_vocab.json') as json_file:
    spa_vocab = json.load(json_file)
    spa_vectorization.set_vocabulary(spa_vocab)

# Load the Spanish model
transformer = load_model('transformer_model')

spa_index_lookup = dict(zip(range(len(spa_vocab)), spa_vocab))
max_decoded_sentence_length = 20

def beam_search_decode(input_sentence, beam_width=3):
    tokenized_input_sentence = eng_vectorization([input_sentence])
    decoded_sentences = [("[start]", 0.0)]
    
    for i in range(max_decoded_sentence_length):
        all_candidates = []
        for decoded_sentence, score in decoded_sentences:
            tokenized_target_sentence = spa_vectorization([decoded_sentence])[:, :-1]
            predictions = transformer([tokenized_input_sentence, tokenized_target_sentence])
            top_k = tf.math.top_k(predictions[0, i, :], k=beam_width)
            
            for j in range(beam_width):
                predicted_token_index = top_k.indices[j].numpy()
                predicted_token = spa_index_lookup[predicted_token_index]
                candidate = (decoded_sentence + " " + predicted_token, score + top_k.values[j].numpy())
                all_candidates.append(candidate)
        
        ordered = sorted(all_candidates, key=lambda x: x[1], reverse=True)
        decoded_sentences = ordered[:beam_width]
        
        if all(sentence[0].endswith("[end]") for sentence in decoded_sentences):
            break
    
    return decoded_sentences[0][0]

# English to French translation
# Load French model
model = load_model('english_to_french_model')

# Load Tokenizer
with open('english_tokenizer.json') as f:
    data = json.load(f)
    english_tokenizer = tokenizer_from_json(data)
    
with open('french_tokenizer.json') as f:
    data = json.load(f)
    french_tokenizer = tokenizer_from_json(data)
    
# Load max length
with open('sequence_length.json') as f:
    max_length = json.load(f)
    
def pad(x, length=None):
    return pad_sequences(x, maxlen=length, padding='post')

def translate_to_french(english_sentence):
    english_sentence = english_sentence.lower()
    english_sentence = re.sub(r'[.?!,]', '', english_sentence)
    english_sentence = english_tokenizer.texts_to_sequences([english_sentence])
    english_sentence = pad(english_sentence, max_length)
    english_sentence = english_sentence.reshape((-1, max_length))
    
    french_sentence = model.predict(english_sentence)[0]
    french_sentence = [np.argmax(word) for word in french_sentence]
    french_sentence = french_tokenizer.sequences_to_texts([french_sentence])[0]
    
    return french_sentence

def translate_to_spanish(english_sentence):
    spanish_sentence = beam_search_decode(english_sentence)
    return spanish_sentence.replace("[start]", "").replace("[end]", "").strip()

# Function to handle translation request based on selected language
def handle_translate():
    selected_language = language_var.get()
    english_sentence = text_input.get("1.0", "end-1c")
    
    if selected_language == "French":
        translation = translate_to_french(english_sentence)
    elif selected_language == "Spanish":
        translation = translate_to_spanish(english_sentence)
        
    translation_output.delete("1.0", "end")
    translation_output.insert("end", f"{selected_language} translation: {translation}")

# Setting up the main window
root = tk.Tk()
root.title("Language Translator")
root.geometry("550x600")

# Font configuration
font_style = "Times New Roman"
font_size = 14

# Frame for input
input_frame = tk.Frame(root)
input_frame.pack(pady=10)

# Heading for input
input_heading = tk.Label(input_frame, text="Enter the text to be translated", font=(font_style, font_size, 'bold'))
input_heading.pack()
# Text input for English sentence
text_input = tk.Text(input_frame, height=5, width=50, font=(font_style, font_size))
text_input.pack()

# Language selection
language_var = tk.StringVar()
language_label = tk.Label(root, text="Select the language to translate to", font=(font_style, font_size, 'bold'))
language_label.pack()
language_select = ttk.Combobox(root, textvariable=language_var, values=["French", "Spanish"], font=(font_style, font_size), state="readonly")
language_select.pack()

# Submit button
submit_button = ttk.Button(root, text="Translate", command=handle_translate)
submit_button.pack(pady=10)

# Frame for output
output_frame = tk.Frame(root)
output_frame.pack(pady=10)
# Heading for output
output_heading = tk.Label(output_frame, text="Translation: ", font=(font_style, font_size, 'bold'))
output_heading.pack()

# Text output for translations
translation_output = tk.Text(output_frame, height=10, width=50, font=(font_style, font_size))
translation_output.pack()

# Running the application
root.mainloop()