|
from fastapi import FastAPI |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from pydantic import BaseModel |
|
from transformers import pipeline |
|
import uvicorn |
|
|
|
|
|
app = FastAPI(title="OrcaleSeek API", version="1.0.0") |
|
|
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
classifier = pipeline( |
|
"text-classification", |
|
model="your-username/OrcaleSeek", |
|
tokenizer="your-username/OrcaleSeek" |
|
) |
|
|
|
class PredictionRequest(BaseModel): |
|
text: str |
|
max_length: int = 128 |
|
|
|
class PredictionResponse(BaseModel): |
|
prediction: list |
|
status: str |
|
model: str = "OrcaleSeek" |
|
|
|
@app.get("/") |
|
def home(): |
|
return {"message": "OrcaleSeek API is running! ๐"} |
|
|
|
@app.get("/health") |
|
def health_check(): |
|
return {"status": "healthy"} |
|
|
|
@app.post("/predict", response_model=PredictionResponse) |
|
async def predict(request: PredictionRequest): |
|
try: |
|
result = classifier(request.text) |
|
return PredictionResponse( |
|
prediction=result, |
|
status="success" |
|
) |
|
except Exception as e: |
|
return PredictionResponse( |
|
prediction=[], |
|
status=f"error: {str(e)}" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |