Create train.py
Browse files
train.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
AutoTokenizer,
|
3 |
+
AutoModelForSequenceClassification,
|
4 |
+
TrainingArguments,
|
5 |
+
Trainer,
|
6 |
+
DataCollatorWithPadding
|
7 |
+
)
|
8 |
+
from datasets import load_dataset
|
9 |
+
import torch
|
10 |
+
|
11 |
+
def train_model():
|
12 |
+
# Load your model and tokenizer
|
13 |
+
model_name = "your-username/your-model-name"
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
16 |
+
|
17 |
+
# Load your dataset (replace with actual dataset)
|
18 |
+
dataset = load_dataset("imdb") # Example dataset
|
19 |
+
|
20 |
+
def tokenize_function(examples):
|
21 |
+
return tokenizer(examples["text"], truncation=True)
|
22 |
+
|
23 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
24 |
+
|
25 |
+
# Training arguments
|
26 |
+
training_args = TrainingArguments(
|
27 |
+
output_dir="./results",
|
28 |
+
learning_rate=2e-5,
|
29 |
+
per_device_train_batch_size=16,
|
30 |
+
per_device_eval_batch_size=16,
|
31 |
+
num_train_epochs=3,
|
32 |
+
weight_decay=0.01,
|
33 |
+
evaluation_strategy="epoch",
|
34 |
+
save_strategy="epoch",
|
35 |
+
load_best_model_at_end=True,
|
36 |
+
)
|
37 |
+
|
38 |
+
# Initialize Trainer
|
39 |
+
trainer = Trainer(
|
40 |
+
model=model,
|
41 |
+
args=training_args,
|
42 |
+
train_dataset=tokenized_datasets["train"],
|
43 |
+
eval_dataset=tokenized_datasets["test"],
|
44 |
+
tokenizer=tokenizer,
|
45 |
+
data_collator=DataCollatorWithPadding(tokenizer=tokenizer),
|
46 |
+
)
|
47 |
+
|
48 |
+
# Start training
|
49 |
+
trainer.train()
|
50 |
+
|
51 |
+
# Save the fine-tuned model
|
52 |
+
trainer.save_model("./fine-tuned-model")
|
53 |
+
tokenizer.save_pretrained("./fine-tuned-model")
|
54 |
+
|
55 |
+
if __name__ == "__main__":
|
56 |
+
train_model()
|