Create analyze_model.py
Browse files- analyze_model.py +23 -0
analyze_model.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModel, AutoTokenizer
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
def analyze_model(model_path):
|
6 |
+
model = AutoModel.from_pretrained(model_path)
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
8 |
+
|
9 |
+
print("=== Model Architecture ===")
|
10 |
+
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}")
|
11 |
+
print(f"Layers: {len(model.encoder.layer) if hasattr(model, 'encoder') else 'N/A'}")
|
12 |
+
|
13 |
+
# Analyze attention patterns
|
14 |
+
if hasattr(model, 'encoder'):
|
15 |
+
layer = model.encoder.layer[0]
|
16 |
+
print(f"Attention heads: {layer.attention.self.num_attention_heads}")
|
17 |
+
|
18 |
+
return model, tokenizer
|
19 |
+
|
20 |
+
def plot_training_metrics(log_file='training.log'):
|
21 |
+
# Parse training logs and create plots
|
22 |
+
# This would read your training logs and create nice graphs
|
23 |
+
pass
|