File size: 5,919 Bytes
ff17dd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
"""
PyPilot Training Manager - Advanced distributed training with monitoring
"""
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from transformers import TrainingArguments, Trainer, EarlyStoppingCallback
import wandb
import numpy as np
import time
from datetime import datetime
import os

class CodeDataset(Dataset):
    def __init__(self, tokenized_data):
        self.data = tokenized_data
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        return self.data[idx]

class PyPilotTrainingManager:
    def __init__(self, model, model_name="PyPilot"):
        self.model = model
        self.model_name = model_name
        self.training_history = []
        self.best_loss = float('inf')
        
    def setup_distributed_training(self, use_fp16=True, use_gradient_checkpointing=True):
        """Configure distributed training options"""
        training_args = TrainingArguments(
            output_dir=f"./pypilot-checkpoints",
            overwrite_output_dir=True,
            num_train_epochs=10,
            per_device_train_batch_size=4,
            per_device_eval_batch_size=4,
            gradient_accumulation_steps=8,
            learning_rate=5e-5,
            weight_decay=0.01,
            warmup_steps=1000,
            logging_dir="./logs",
            logging_steps=500,
            eval_steps=1000,
            save_steps=2000,
            save_total_limit=5,
            prediction_loss_only=True,
            remove_unused_columns=False,
            fp16=use_fp16,
            dataloader_pin_memory=False,
            gradient_checkpointing=use_gradient_checkpointing,
            report_to=["wandb"],
            run_name=f"pypilot-{datetime.now().strftime('%Y-%m-%d-%H-%M')}",
        )
        return training_args
    
    def setup_wandb_monitoring(self, project_name="pypilot"):
        """Initialize Weights & Biases for experiment tracking"""
        wandb.init(
            project=project_name,
            name=f"pypilot-{datetime.now().strftime('%Y-%m-%d-%H-%M')}",
            config={
                "architecture": "Transformer",
                "dataset": "GitHub Code",
                "epochs": 10,
                "batch_size": 32,
            }
        )
    
    def create_advanced_callbacks(self):
        """Create callbacks for training optimization"""
        callbacks = [
            EarlyStoppingCallback(early_stopping_patience=3),
        ]
        return callbacks
    
    def compute_metrics(self, eval_pred):
        """Compute advanced metrics for code generation"""
        predictions, labels = eval_pred
        predictions = torch.tensor(predictions)
        labels = torch.tensor(labels)
        
        # Calculate perplexity
        loss_fct = nn.CrossEntropyLoss()
        loss = loss_fct(predictions.view(-1, predictions.size(-1)), labels.view(-1))
        perplexity = torch.exp(loss)
        
        # Calculate accuracy
        preds = torch.argmax(predictions, dim=-1)
        accuracy = (preds == labels).float().mean()
        
        return {
            "perplexity": perplexity.item(),
            "accuracy": accuracy.item(),
            "loss": loss.item()
        }
    
    def train_with_advanced_features(self, train_dataset, eval_dataset=None):
        """Start advanced training with all features"""
        print("πŸš€ Starting Advanced PyPilot Training...")
        
        # Setup monitoring
        self.setup_wandb_monitoring()
        
        # Configure training
        training_args = self.setup_distributed_training()
        callbacks = self.create_advanced_callbacks()
        
        # Create trainer
        trainer = Trainer(
            model=self.model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=self.compute_metrics,
            callbacks=callbacks,
        )
        
        # Start training
        print("🎯 Training started with advanced features:")
        print(f"   - FP16 Precision: Enabled")
        print(f"   - Gradient Checkpointing: Enabled") 
        print(f"   - Early Stopping: Enabled")
        print(f"   - W&B Monitoring: Enabled")
        
        trainer.train()
        
        # Save final model
        trainer.save_model("./pypilot-final-model")
        print("βœ… Training completed and model saved!")
        
        return trainer
    
    def hyperparameter_search(self, train_dataset, param_combinations):
        """Perform hyperparameter search"""
        best_params = None
        
        for i, params in enumerate(param_combinations):
            print(f"πŸ” Testing hyperparameter combination {i+1}/{len(param_combinations)}")
            
            # Update model with new params
            self.update_model_hyperparams(params)
            
            # Quick training run to evaluate
            quick_trainer = Trainer(
                model=self.model,
                args=TrainingArguments(
                    output_dir=f"./hparam-search-{i}",
                    num_train_epochs=1,
                    per_device_train_batch_size=params['batch_size'],
                    learning_rate=params['learning_rate'],
                ),
                train_dataset=train_dataset,
            )
            
            results = quick_trainer.train()
            
            if results.training_loss < self.best_loss:
                self.best_loss = results.training_loss
                best_params = params
        
        print(f"🎯 Best hyperparameters: {best_params}")
        return best_params

if __name__ == "__main__":
    # Example usage
    from modeling_pypilot import PyPilotModel, PyPilotConfig
    
    config = PyPilotConfig()
    model = PyPilotModel(config)
    
    manager = PyPilotTrainingManager(model)
    print("βœ… Training Manager ready!")