""" PyPilot Model Deployer - Production deployment and serving """ import torch from transformers import pipeline import flask from flask import Flask, request, jsonify import fastapi from fastapi import FastAPI, HTTPException import uvicorn import threading import time from datetime import datetime class PyPilotDeployer: def __init__(self, model_path=None): self.model_path = model_path self.model = None self.tokenizer = None self.is_loaded = False def load_model_for_inference(self, quantize=True): """Load model optimized for inference""" print("šŸ”„ Loading model for inference...") if quantize: # Apply quantization for faster inference self.model = torch.quantization.quantize_dynamic( self.model, {torch.nn.Linear}, dtype=torch.qint8 ) print("āœ… Model quantized for faster inference") self.model.eval() self.is_loaded = True print("āœ… Model ready for inference!") def create_flask_api(self, host='0.0.0.0', port=5000): """Create Flask REST API for model serving""" app = Flask(__name__) @app.route('/health', methods=['GET']) def health_check(): return jsonify({'status': 'healthy', 'timestamp': datetime.now().isoformat()}) @app.route('/complete', methods=['POST']) def code_completion(): data = request.get_json() code_prompt = data.get('code', '') max_length = data.get('max_length', 100) if not self.is_loaded: return jsonify({'error': 'Model not loaded'}), 500 try: completion = self.generate_completion(code_prompt, max_length) return jsonify({ 'completion': completion, 'timestamp': datetime.now().isoformat() }) except Exception as e: return jsonify({'error': str(e)}), 500 @app.route('/analyze', methods=['POST']) def code_analysis(): data = request.get_json() code = data.get('code', '') from code_analyzer import PyPilotCodeAnalyzer analyzer = PyPilotCodeAnalyzer() analysis = analyzer.comprehensive_analysis(code) return jsonify(analysis) print(f"🌐 Starting Flask API on {host}:{port}") return app, host, port def create_fastapi_service(self): """Create FastAPI service for high-performance serving""" app = FastAPI(title="PyPilot API", version="1.0.0") @app.get("/") async def root(): return {"message": "PyPilot Code Assistant API"} @app.post("/v1/completions") async def create_completion(request: dict): code = request.get("code", "") max_tokens = request.get("max_tokens", 100) if not code: raise HTTPException(status_code=400, detail="Code prompt required") completion = self.generate_completion(code, max_tokens) return { "completion": completion, "model": "PyPilot", "created": datetime.now().isoformat() } @app.post("/v1/analysis") async def analyze_code(request: dict): code = request.get("code", "") from code_analyzer import PyPilotCodeAnalyzer analyzer = PyPilotCodeAnalyzer() analysis = analyzer.comprehensive_analysis(code) return analysis return app def generate_completion(self, prompt, max_length=100): """Generate code completion""" # This would use the actual model for inference # For now, return a mock completion mock_completions = [ f"# Generated completion for your code\nprint('Hello from PyPilot!')", f"# TODO: Implement this functionality\nreturn result", f"# PyPilot suggestion\nif __name__ == '__main__':\n main()" ] import random return random.choice(mock_completions) def start_serving(self, api_type='flask', **kwargs): """Start the model serving API""" if api_type == 'flask': app, host, port = self.create_flask_api(**kwargs) app.run(host=host, port=port, debug=False) elif api_type == 'fastapi': app = self.create_fastapi_service() uvicorn.run(app, host=kwargs.get('host', '0.0.0.0'), port=kwargs.get('port', 8000)) def create_gradio_interface(self): """Create Gradio web interface for easy testing""" try: import gradio as gr def gradio_complete(code): return self.generate_completion(code) def gradio_analyze(code): from code_analyzer import PyPilotCodeAnalyzer analyzer = PyPilotCodeAnalyzer() return analyzer.comprehensive_analysis(code) interface = gr.Interface( fn=gradio_complete, inputs=gr.Textbox(lines=10, placeholder="Enter your code here..."), outputs="text", title="PyPilot Code Assistant", description="AI-powered code completion and analysis" ) return interface except ImportError: print("Gradio not installed. Install with: pip install gradio") return None if __name__ == "__main__": deployer = PyPilotDeployer() # Start a simple Flask server print("šŸš€ Starting PyPilot deployment...") app, host, port = deployer.create_flask_api(port=5001) # Run in background thread def run_flask(): app.run(host=host, port=port, debug=False, use_reloader=False) flask_thread = threading.Thread(target=run_flask) flask_thread.daemon = True flask_thread.start() print(f"āœ… PyPilot API running on http://{host}:{port}") print("šŸ“š Endpoints:") print(" GET /health - Health check") print(" POST /complete - Code completion") print(" POST /analyze - Code analysis") # Keep running try: while True: time.sleep(1) except KeyboardInterrupt: print("\nšŸ›‘ Shutting down PyPilot...")