File size: 5,927 Bytes
56cd651
 
 
bd575bc
 
 
 
 
 
 
 
 
 
56cd651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd575bc
56cd651
bd575bc
 
 
 
 
56cd651
 
 
 
 
71d0e61
 
56cd651
 
 
 
 
 
 
71d0e61
56cd651
 
 
71d0e61
56cd651
 
 
 
71d0e61
 
 
56cd651
 
 
71d0e61
 
 
56cd651
 
 
71d0e61
 
56cd651
 
 
 
 
71d0e61
 
 
 
 
 
 
 
 
 
 
 
56cd651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71d0e61
 
 
 
 
56cd651
71d0e61
56cd651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71d0e61
56cd651
71d0e61
56cd651
71d0e61
 
 
56cd651
71d0e61
56cd651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
---
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
library_name: peft
tags:
- lora
- cli
- command-line
- fine-tuned
- ssh
- grep
- git
- sed
- tar
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->



## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->



- **Developed by:** prital27
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** prital27
- **Model type:** causal_lm
- **Language(s) (NLP):** en
- **License:** apache-2.0
- **Finetuned from model [optional]:** TinyLlama/TinyLlama-1.1B-Chat-v1.0

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** https://huggingface.co/prital27/tinyllama-lora-cli-utils
- **Paper [optional]:**  N/A
- **Demo [optional]:** [More Information Needed]

## Uses


### Direct Use

This model is fine-tuned for answering CLI-related questions. It is best suited for generating shell command suggestions for tasks involving tools like `git`,`tar`, `ssh`, general Unix commands and basic 'sed' and 'grep' commands. Ideal for use in AI assistants, terminal copilots, or educational tools.

### Downstream Use [optional]

This adapter can be integrated into a CLI assistant application or chatbot for developers and system administrators.


### Out-of-Scope Use

- Not suitable for general conversation or non-technical queries.
- Not intended for security-sensitive operations (e.g., altering SSH settings on production systems).
- May produce incorrect or unsafe commands if misused.

## Bias, Risks, and Limitations

- Does not generalize well to non-trained or very obscure command-line tools.
- May hallucinate incorrect or risky commands if given vague instructions.
- No safety layer is applied to verify command validity.

### Recommendations

- Use with human supervision.
- Always validate generated commands before execution.

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel

tokenizer = AutoTokenizer.from_pretrained("prital27/tinyllama-lora-cli-utils")
base = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
model = PeftModel.from_pretrained(base, "prital27/tinyllama-lora-cli-utils")

prompt = "### Question:\nHow do I search for TODOs recursively?\n\n### Answer:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0]))


## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

Precision: fp16 mixed precision

Epochs: 3

Batch Size: 2 (gradient accumulation = 2)

Learning Rate: 2e-4
#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

Accuracy on direct prompts: ~85%

Basic shell command correctness: high

Limitations on multi-line/bash scripting: present

#### Summary

The model reliably suggests shell commands for common CLI tasks. Performance degrades on ambiguous prompts or complex multi-line scripts.

## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]
### Framework versions

- PEFT 0.15.2