SentenceTransformer based on pritamdeka/distilbert-base-multilingual-cased-indicxnli-random-negatives-v1
This is a sentence-transformers model finetuned from pritamdeka/distilbert-base-multilingual-cased-indicxnli-random-negatives-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: pritamdeka/distilbert-base-multilingual-cased-indicxnli-random-negatives-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pritamdeka/distilbert-base-multilingual-cased-indicxnli-random-negatives-v1-sts")
# Run inference
sentences = [
'ইণ্টাৰনেট কেমেৰাৰ জৰিয়তে এগৰাকী ছোৱালীৰ লগত কথা পাতিলে মানুহজনে।',
'ৱেবকেমৰ জৰিয়তে এগৰাকী ছোৱালীৰ সৈতে কথা পাতিছে এজন কিশোৰে।',
'এজন মানুহে গীটাৰ বজাই আছে।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
pritamdeka/stsb-assamese-translated-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.8104 |
| spearman_cosine | 0.8087 |
| pearson_manhattan | 0.7857 |
| spearman_manhattan | 0.7931 |
| pearson_euclidean | 0.7876 |
| spearman_euclidean | 0.7952 |
| pearson_dot | 0.7706 |
| spearman_dot | 0.7771 |
| pearson_max | 0.8104 |
| spearman_max | 0.8087 |
Semantic Similarity
- Dataset:
pritamdeka/stsb-assamese-translated-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.7702 |
| spearman_cosine | 0.7661 |
| pearson_manhattan | 0.7494 |
| spearman_manhattan | 0.7529 |
| pearson_euclidean | 0.7499 |
| spearman_euclidean | 0.7531 |
| pearson_dot | 0.7193 |
| spearman_dot | 0.7152 |
| pearson_max | 0.7702 |
| spearman_max | 0.7661 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64num_train_epochs: 10warmup_ratio: 0.1fp16: Trueload_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | pritamdeka/stsb-assamese-translated-dev_spearman_cosine | pritamdeka/stsb-assamese-translated-test_spearman_cosine |
|---|---|---|---|---|---|
| 1.1111 | 100 | 0.0386 | 0.0324 | 0.8024 | - |
| 2.2222 | 200 | 0.0238 | 0.0316 | 0.8095 | - |
| 3.3333 | 300 | 0.0141 | 0.0316 | 0.8092 | - |
| 4.4444 | 400 | 0.0086 | 0.0319 | 0.8085 | - |
| 5.5556 | 500 | 0.0065 | 0.0314 | 0.8107 | - |
| 6.6667 | 600 | 0.005 | 0.0318 | 0.8088 | - |
| 7.7778 | 700 | 0.0044 | 0.0320 | 0.8076 | - |
| 8.8889 | 800 | 0.0038 | 0.0317 | 0.8095 | - |
| 10.0 | 900 | 0.0035 | 0.0318 | 0.8087 | 0.7661 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 6
Model tree for pritamdeka/distilbert-base-multilingual-cased-indicxnli-random-negatives-v1-sts
Evaluation results
- Pearson Cosine on pritamdeka/stsb assamese translated devself-reported0.810
- Spearman Cosine on pritamdeka/stsb assamese translated devself-reported0.809
- Pearson Manhattan on pritamdeka/stsb assamese translated devself-reported0.786
- Spearman Manhattan on pritamdeka/stsb assamese translated devself-reported0.793
- Pearson Euclidean on pritamdeka/stsb assamese translated devself-reported0.788
- Spearman Euclidean on pritamdeka/stsb assamese translated devself-reported0.795
- Pearson Dot on pritamdeka/stsb assamese translated devself-reported0.771
- Spearman Dot on pritamdeka/stsb assamese translated devself-reported0.777
- Pearson Max on pritamdeka/stsb assamese translated devself-reported0.810
- Spearman Max on pritamdeka/stsb assamese translated devself-reported0.809