--- license: mit language: - en base_model: - rednote-hilab/dots.ocr pipeline_tag: image-text-to-text library_name: transformers tags: - pytorch - markdown - text-generation-inference - ocr - document - vlm - extraction --- ![1](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/qtmyqoGljJO--1XC81hH7.png) # **Dots.OCR-Latest-BF16** > **Dots.OCR-Latest-BF16** is an optimized and updated vision-language OCR model variant of the original [Dots.OCR](https://huggingface.co/rednote-hilab/dots.ocr). This open-source model is designed to extract text from images and scanned documents, including handwritten and printed content. It can output results as plain text or Markdown, preserving document layout elements such as headings, tables, and lists. This model uses a powerful multimodal backbone (**3B VLM**) to enhance reading comprehension and layout understanding, handling cursive handwriting and complex document structures effectively. The **BF16 variant** has been tested and updated to work smoothly with the latest `transformers` version without compatibility issues, ensuring optimized performance. ``` transformers: 4.57.1 torch: 2.6.0+cu124 cuda: 12.4 device: NVIDIA H200 MIG 3g.71gb attn_implementation= "flash_attention_2" ``` ## Quick Start with Transformers 🤗 #### Install the required packages ``` gradio numpy torch torchvision transformers==4.57.1 accelerate matplotlib flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl ``` ### Run Demo ```py import os import sys import random import uuid import json import time from threading import Thread from typing import Iterable from huggingface_hub import snapshot_download import gradio as gr import torch import numpy as np from PIL import Image import cv2 from transformers import ( AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer, ) from transformers.image_utils import load_image css = """ #main-title h1 { font-size: 2.3em !important; } #output-title h2 { font-size: 2.1em !important; } """ MAX_MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 2048 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("--- System Information ---") print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) print("torch.__version__ =", torch.__version__) print("torch.version.cuda =", torch.version.cuda) print("CUDA available:", torch.cuda.is_available()) print("CUDA device count:", torch.cuda.device_count()) if torch.cuda.is_available(): print("Current device:", torch.cuda.current_device()) print("Device name:", torch.cuda.get_device_name(torch.cuda.current_device())) print("Using device:", device) print("--------------------------") print("Loading Dots.OCR model...") MODEL_PATH_D = "prithivMLmods/Dots.OCR-Latest-BF16" processor = AutoProcessor.from_pretrained(MODEL_PATH_D, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_PATH_D, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ).eval() print("Dots.OCR model loaded successfully.") def generate_image(text: str, image: Image.Image, max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float): """ Generates responses using the Dots.OCR model for image input. Yields raw text and Markdown-formatted text. """ if image is None: yield "Please upload an image.", "Please upload an image." return messages = [{ "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": text}, ] }] prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor( text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = { **inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, } thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text # Clean up potential end-of-sequence tokens from the buffer buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) yield buffer, buffer with gr.Blocks(css=css) as demo: gr.Markdown("# **Dots.OCR**", elem_id="main-title") with gr.Row(): with gr.Column(scale=2): image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") image_upload = gr.Image(type="pil", label="Upload Image", height=290) image_submit = gr.Button("Submit", variant="primary") with gr.Accordion("Advanced options", open=False): max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7) top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.1) with gr.Column(scale=3): gr.Markdown("## Output", elem_id="output-title") output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=15, show_copy_button=True) with gr.Accordion("(Result.md)", open=False): markdown_output = gr.Markdown(label="(Result.Md)") image_submit.click( fn=generate_image, inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[output, markdown_output] ) if __name__ == "__main__": demo.queue(max_size=50).launch(ssr_mode=False, show_error=True) ``` ## Model and Resource Links | Resource Type | Description | Link | |----------------|--------------|------| | Original Model Card | Official release of Dots.OCR by rednote-hilab | [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr) | | Test Model (StrangerZone HF) | Community test deployment (experimental) | [strangervisionhf/dots.ocr-base-fix](https://huggingface.co/strangervisionhf/dots.ocr-base-fix) | | Standard Model Card | Optimized version supporting Transformers v4.57.1 (BF16 precision) | [prithivMLmods/Dots.OCR-Latest-BF16](https://huggingface.co/prithivMLmods/Dots.OCR-Latest-BF16) | | Demo Space | Interactive demo hosted on Hugging Face Spaces | [Multimodal-OCR3 Demo](https://huggingface.co/spaces/prithivMLmods/Multimodal-OCR3) |