File size: 3,253 Bytes
61eba1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
library_name: transformers
language:
- nl
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- procit007/saskia_may23_39768
model-index:
- name: speecht5_tts_v1_100
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_tts_v1_100

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the saskia_may23_39768 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4580

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 90

### Training results

| Training Loss | Epoch   | Step  | Validation Loss |
|:-------------:|:-------:|:-----:|:---------------:|
| 0.5267        | 2.7939  | 1000  | 0.4852          |
| 0.4925        | 5.5870  | 2000  | 0.4635          |
| 0.488         | 8.3802  | 3000  | 0.4534          |
| 0.4771        | 11.1733 | 4000  | 0.4528          |
| 0.4703        | 13.9672 | 5000  | 0.4473          |
| 0.4566        | 16.7603 | 6000  | 0.4435          |
| 0.4548        | 19.5535 | 7000  | 0.4532          |
| 0.4499        | 22.3466 | 8000  | 0.4473          |
| 0.456         | 25.1398 | 9000  | 0.4446          |
| 0.4531        | 27.9336 | 10000 | 0.4457          |
| 0.4479        | 30.7268 | 11000 | 0.4495          |
| 0.4461        | 33.5199 | 12000 | 0.4430          |
| 0.4384        | 36.3131 | 13000 | 0.4410          |
| 0.4346        | 39.1062 | 14000 | 0.4475          |
| 0.4399        | 41.9001 | 15000 | 0.4461          |
| 0.4342        | 44.6932 | 16000 | 0.4455          |
| 0.433         | 47.4864 | 17000 | 0.4486          |
| 0.4344        | 50.2795 | 18000 | 0.4568          |
| 0.433         | 53.0727 | 19000 | 0.4490          |
| 0.4318        | 55.8665 | 20000 | 0.4554          |
| 0.4292        | 58.6597 | 21000 | 0.4535          |
| 0.4289        | 61.4528 | 22000 | 0.4510          |
| 0.4284        | 64.2460 | 23000 | 0.4534          |
| 0.43          | 67.0391 | 24000 | 0.4489          |
| 0.4277        | 69.8330 | 25000 | 0.4541          |
| 0.429         | 72.6261 | 26000 | 0.4548          |
| 0.423         | 75.4193 | 27000 | 0.4612          |
| 0.4265        | 78.2124 | 28000 | 0.4516          |
| 0.4344        | 81.0056 | 29000 | 0.4584          |
| 0.4303        | 83.7994 | 30000 | 0.4610          |
| 0.4279        | 86.5926 | 31000 | 0.4562          |
| 0.428         | 89.3857 | 32000 | 0.4580          |


### Framework versions

- Transformers 4.56.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2