rampnet-model / modeling.py
johnomeara's picture
Update modeling.py
58fa1b8 verified
raw
history blame contribute delete
905 Bytes
import torch
import torch.nn as nn
import timm
from huggingface_hub import PyTorchModelHubMixin
class KeypointModel(nn.Module, PyTorchModelHubMixin):
def __init__(self, config, **kwargs):
super().__init__()
upsample_size = config.heatmap_size
backbone = timm.create_model('convnextv2_base.fcmae_ft_in22k_in1k_384', pretrained=False)
self.feature_extractor = nn.Sequential(*list(backbone.children())[:-2])
in_channels = backbone.num_features
self.head = nn.Sequential(
nn.Conv2d(in_channels, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Upsample(size=upsample_size, mode='bilinear', align_corners=False),
nn.Conv2d(256, 1, kernel_size=1)
)
def forward(self, image):
features = self.feature_extractor(image)
heatmap = self.head(features)
return heatmap