--- library_name: diffusers tags: - safetensors - pruna_pro-ai - pruna-ai --- # Model Card for pruna-test/test-save-tiny-stable-diffusion-pipe-smashed-pro This model was created using the [pruna](https://github.com/PrunaAI/pruna) library. Pruna is a model optimization framework built for developers, enabling you to deliver more efficient models with minimal implementation overhead. ## Usage First things first, you need to install the pruna library: ```bash pip install pruna_pro ``` You can [use the diffusers library to load the model](https://huggingface.co/pruna-test/test-save-tiny-stable-diffusion-pipe-smashed-pro?library=diffusers) but this might not include all optimizations by default. To ensure that all optimizations are applied, use the pruna library to load the model using the following code: ```python from pruna_pro import PrunaProModel loaded_model = PrunaProModel.from_pretrained( "pruna-test/test-save-tiny-stable-diffusion-pipe-smashed-pro" ) # we can then run inference using the methods supported by the base model ``` For inference, you can use the inference methods of the original model like shown in [the original model card](https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe?library=diffusers). Alternatively, you can visit [the Pruna documentation](https://docs.pruna.ai/en/stable/) for more information. ## Smash Configuration The compression configuration of the model is stored in the `smash_config.json` file, which describes the optimization methods that were applied to the model. ```bash { "adaptive": false, "auto": false, "awq": false, "bottleneck": false, "c_generate": false, "c_translate": false, "c_whisper": false, "deepcache": false, "diffusers_higgs": false, "diffusers_int8": false, "fastercache": false, "flash_attn3": false, "flux_caching": false, "fora": false, "fp4": false, "fp8": false, "gptq": false, "half": false, "higgs": false, "hqq": false, "hqq_diffusers": false, "hyper": false, "ifw": false, "img2img_denoise": false, "ipex_llm": false, "llm_int8": false, "pab": false, "padding_pruning": false, "periodic": false, "prores": false, "qkv_diffusers": false, "quanto": false, "realesrgan_upscale": false, "ring_attn": false, "stable_fast": false, "taylor": false, "taylor_auto": false, "text_to_image_distillation_inplace_perp": false, "text_to_image_distillation_lora": false, "text_to_image_distillation_perp": false, "text_to_image_inplace_perp": false, "text_to_image_lora": false, "text_to_image_perp": false, "text_to_text_inplace_perp": false, "text_to_text_lora": false, "text_to_text_perp": false, "torch_compile": false, "torch_dynamic": false, "torch_structured": false, "torch_unstructured": false, "torchao": false, "torchao_autoquant": false, "whisper_s2t": false, "x_fast": false, "zipar": false, "batch_size": 1, "device": "cpu", "device_map": null, "save_fns": [], "load_fns": [ "diffusers" ], "reapply_after_load": {} } ``` ## 🌍 Join the Pruna AI community! [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/JFQmtFKCjd) [![Reddit](https://img.shields.io/reddit/subreddit-subscribers/PrunaAI?style=social)](https://www.reddit.com/r/PrunaAI/)