File size: 1,556 Bytes
9341c01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
license: llama3.2
base_model: meta-llama/Meta-Llama-3-3B
tags:
- summarization
- news
- llama3
- fine-tuned
- llama3.2
---
# π° Automatic News Summarizer (Fine-tuned on LLaMA 3.2 3B)
This model is a fine-tuned version of **Meta-LLaMA-3-3B**, optimized for **automatic news summarization** tasks. It is designed to generate concise and coherent summaries of news articles using state-of-the-art language modeling techniques.
## π Model Details
- **Base model**: [Meta-LLaMA-3-3B](https://huggingface.co/meta-llama/Meta-Llama-3-3B)
- **Fine-tuned for**: Summarization
- **Architecture**: Decoder-only Transformer (LLaMA 3.2 3B)
- **License**: [Meta LLaMA 3 Community License](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
## π Training
- Fine-tuned on a dataset of curated news articles and summaries
- Optimized for relevance, coherence, and brevity
- Training framework: Hugging Face Transformers
- Fine-tuning platform: Google Colab
## π Usage Example
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "punit16/automatic_news_summarizer"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
input_text = "The government has announced a new policy today aimed at reducing air pollution in major cities..."
inputs = tokenizer(input_text, return_tensors="pt")
summary_ids = model.generate(**inputs, max_new_tokens=512)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print("Summary:", summary)
|