File size: 12,747 Bytes
8e8bf03 80b6142 7559662 80b6142 8e8bf03 80b6142 7559662 428e083 7559662 979c057 7559662 979c057 7559662 428e083 7559662 979c057 7559662 428e083 7559662 ab54ce3 7559662 ab54ce3 99f7e5b 7559662 979c057 7559662 ab54ce3 7559662 8e8bf03 7559662 8e8bf03 ab54ce3 979c057 7559662 8e8bf03 7559662 8e8bf03 7559662 8e8bf03 7559662 8e8bf03 7559662 8e8bf03 7559662 8e8bf03 80b6142 7559662 ab54ce3 8e8bf03 7559662 8e8bf03 7559662 8e8bf03 7559662 8e8bf03 7559662 8e8bf03 7559662 8e8bf03 7559662 8e8bf03 7559662 8e8bf03 7559662 979c057 7559662 8e8bf03 7559662 8e8bf03 7559662 8e8bf03 7559662 8e8bf03 7559662 8e8bf03 7559662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
---
base_model:
- microsoft/Phi-4-mini-instruct
language:
- multilingual
library_name: transformers
license: bsd-3-clause
pipeline_tag: text-generation
tags:
- torchao
- phi
- phi4
- nlp
- code
- math
- chat
- conversational
---
This repository hosts the **Phi4-mini-instruct** model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao)
using int4 weight-only quantization and the [awq](https://arxiv.org/abs/2306.00978) algorithm.
This work is brought to you by the PyTorch team. This model can be used directly or served using [vLLM](https://docs.vllm.ai/en/latest/) for 56% VRAM reduction (3.95 GB needed)
and 1.17x speedup on H100 GPUs. The model is calibrated with 2 samples from `mmlu_pro` task to recover the accuracy for `mmlu_pro` specifically.
# Inference with vLLM
Install vllm nightly and torchao nightly to get some recent changes:
```
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
```
## Serving
Then we can serve with the following command:
```Shell
# Server
export MODEL=pytorch/Phi-4-mini-instruct-AWQ-INT4
VLLM_DISABLE_COMPILE_CACHE=1 vllm serve $MODEL --tokenizer $MODEL -O3
```
```Shell
# Client
curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "pytorch/Phi-4-mini-instruct-AWQ-INT4",
"messages": [
{"role": "user", "content": "Give me a short introduction to large language models."}
],
"temperature": 0.6,
"top_p": 0.95,
"top_k": 20,
"max_tokens": 32768
}'
```
Note: please use `VLLM_DISABLE_COMPILE_CACHE=1` to disable compile cache when running this code, e.g. `VLLM_DISABLE_COMPILE_CACHE=1 python example.py`, since there are some issues with the composability of compile in vLLM and torchao,
this is expected be resolved in pytorch 2.8.
# Inference with Transformers
Install the required packages:
```Shell
pip install git+https://github.com/huggingface/transformers@main
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu126
pip install accelerate
```
Example:
```Py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "pytorch/Phi-4-mini-instruct-AWQ-INT4"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("
")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("
")
print("thinking content:", thinking_content)
print("content:", content)
```
# Quantization Recipe
Install the required packages:
```Shell
pip install git+https://github.com/huggingface/transformers@main
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu126
pip install accelerate
```
Use the following code to get the quantized model:
```Py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
model_id = "microsoft/Phi-4-mini-instruct"
model_to_quantize = "microsoft/Phi-4-mini-instruct"
from torchao.quantization import Int4WeightOnlyConfig, quantize_
from torchao.prototype.awq import (
AWQConfig,
)
from torchao._models._eval import TransformerEvalWrapper
model = AutoModelForCausalLM.from_pretrained(
model_to_quantize,
device_map="auto",
torch_dtype=torch.bfloat16,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
base_config = Int4WeightOnlyConfig(group_size=128, version=2)
quant_config = AWQConfig(base_config, step="prepare")
quantize_(
model,
quant_config,
)
tasks = ["mmlu_pro"]
TransformerEvalWrapper(
model=model,
tokenizer=tokenizer,
max_seq_length=max_seq_length,
).run_eval(
tasks=tasks,
limit=calibration_limit,
)
quant_config = AWQConfig(base_config, step="convert")
quantize_(model, quant_config)
quantized_model = model
quant_config = AWQConfig(base_config, step="prepare_for_loading")
quantized_model.config.quantization_config = TorchAoConfig(quant_config)
# Push to hub
USER_ID = "YOUR_USER_ID"
MODEL_NAME = model_id.split("/")[-1]
save_to = f"{USER_ID}/{MODEL_NAME}-AWQ-INT4"
quantized_model.push_to_hub(save_to, safe_serialization=False)
tokenizer.push_to_hub(save_to)
# Manual Testing
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
{
"role": "system",
"content": "",
},
{"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
templated_prompt,
return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])
```
Note: to `push_to_hub` you need to run
```Shell
pip install -U "huggingface_hub[cli]"
huggingface-cli login
```
and use a token with write access, from https://huggingface.co/settings/tokens
# Model Quality
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model. Here we only run on mmlu for sanity check.
Since the checkpoint is tuned on `mmlu_pro`, we check against the accuracy for `mmlu_pro`:
| Benchmark | | | |
|----------------------------------|----------------|---------------------------|---------------------------|
| | microsoft/Phi-4-mini-instruct | pytorch/Phi-4-mini-instruct-INT4 | pytorch/Phi-4-mini-instruct-AWQ-INT4
| mmlu_pro | 46.43 | 36.74 | 43.13 |
<details>
<summary> Reproduce Model Quality Results </summary>
Need to install lm-eval from source:
https://github.com/EleutherAI/lm-evaluation-harness#install
## baseline
```Shell
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks mmlu --device cuda:0 --batch_size 8
```
## AWQ-INT4
```Shell
export MODEL=pytorch/Phi-4-mini-instruct-AWQ-INT4
lm_eval --model hf --model_args pretrained=$MODEL --tasks mmlu --device cuda:0 --batch_size 8
```
</details>
# Peak Memory Usage
## Results
| Benchmark | | |
|------------------|----------------|--------------------------------|
| | microsoft/Phi-4-mini-instruct | pytorch/Phi-4-mini-instruct-AWQ-INT4 |
| Peak Memory (GB) | 8.91 | 3.95 (55.67% reduction) |
<details>
<summary> Reproduce Peak Memory Usage Results </summary>
We can use the following code to get a sense of peak memory usage during inference:
```Py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
# use "microsoft/Phi-4-mini-instruct" or "pytorch/Phi-4-mini-instruct-AWQ-INT4"
model_id = "pytorch/Phi-4-mini-instruct-AWQ-INT4"
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)
torch.cuda.reset_peak_memory_stats()
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
{
"role": "system",
"content": "",
},
{"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
templated_prompt,
return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])
mem = torch.cuda.max_memory_reserved() / 1e9
print(f"Peak Memory Usage: {mem:.02f} GB")
```
</details>
# Model Performance
## Results (H100 machine)
| Benchmark (Latency) | | |
|----------------------------------|----------------|--------------------------|
| | microsoft/Phi-4-mini-instruct | pytorch/Phi-4-mini-instruct-AWQ-INT4 |
| latency (batch_size=1) | 1.60s | 1.37s (1.17x speedup) |
| latency (batch_size=256) | 5.47s | 5.55s (0.98x speedup) |
Note: it's expected that the awq-int4 checkpoint is slower when batch size is 256 since the problem is not memory bound but becomes compute bound when batch size is larger, while
int4 weight only checkpoint is only expected to have speedup for memory bound situations.
<details>
<summary> Reproduce Model Performance Results </summary>
## Setup
Get vllm source code:
```Shell
git clone git@github.com:vllm-project/vllm.git
```
Install vllm
```
VLLM_USE_PRECOMPILED=1 pip install --editable .
```
Run the benchmarks under `vllm` root folder:
## benchmark_latency
### baseline
```Shell
export MODEL=microsoft/Phi-4-mini-instruct
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1
```
### AWQ-INT4
```Shell
export MODEL=pytorch/Phi-4-mini-instruct-AWQ-INT4
VLLM_DISABLE_COMPILE_CACHE=1 python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model $MODEL --batch-size 1
```
</details>
# Paper: TorchAO: PyTorch-Native Training-to-Serving Model Optimization
The model's quantization is powered by **TorchAO**, a framework presented in the paper [TorchAO: PyTorch-Native Training-to-Serving Model Optimization](https://huggingface.co/papers/2507.16099).
**Abstract:** We present TorchAO, a PyTorch-native model optimization framework leveraging quantization and sparsity to provide an end-to-end, training-to-serving workflow for AI models. TorchAO supports a variety of popular model optimization techniques, including FP8 quantized training, quantization-aware training (QAT), post-training quantization (PTQ), and 2:4 sparsity, and leverages a novel tensor subclass abstraction to represent a variety of widely-used, backend agnostic low precision data types, including INT4, INT8, FP8, MXFP4, MXFP6, and MXFP8. TorchAO integrates closely with the broader ecosystem at each step of the model optimization pipeline, from pre-training (TorchTitan) to fine-tuning (TorchTune, Axolotl) to serving (HuggingFace, vLLM, SGLang, ExecuTorch), connecting an otherwise fragmented space in a single, unified workflow. TorchAO has enabled recent launches of the quantized Llama 3.2 1B/3B and LlamaGuard3-8B models and is open-source at this https URL .
# Resources
* **Official TorchAO GitHub Repository:** [https://github.com/pytorch/ao](https://github.com/pytorch/ao)
* **TorchAO Documentation:** [https://docs.pytorch.org/ao/stable/index.html](https://docs.pytorch.org/ao/stable/index.html)
# Disclaimer
PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations.
Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.
|