File size: 13,267 Bytes
094ff22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/fgclip2/modular_fgclip2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_fgclip2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class Fgclip2TextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Fgclip2TextModel`]. It is used to instantiate a
Fgclip2 text encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the text encoder of the Fgclip2
[qihoo360/fg-clip2-base](https://huggingface.co/qihoo360/fg-clip2-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Fgclip2 text model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`Fgclip2Model`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 64):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
pad_token_id (`int`, *optional*, defaults to 1):
The id of the padding token in the vocabulary.
bos_token_id (`int`, *optional*, defaults to 49406):
The id of the beginning-of-sequence token in the vocabulary.
eos_token_id (`int`, *optional*, defaults to 49407):
The id of the end-of-sequence token in the vocabulary.
projection_size (`int`, *optional*, defaults to `hidden_size`):
The size of the projection head.
keep_len (`int`, *optional*, defaults to 20):
When processing long texts, the retained tokens are used for handling short text lengths.
For details, please refer to the FG-CLIP 'https://arxiv.org/abs/2505.05071' paper.
longtext_len (`int`, *optional*, defaults to 196):
The maximum number of tokens in long texts that can be processed
Example:
```python
>>> from transformers import Fgclip2TextConfig, Fgclip2TextModel
>>> # Initializing a Fgclip2TextConfig with qihoo/fgclip2-base-patch16 style configuration
>>> configuration = Fgclip2TextConfig()
>>> # Initializing a Fgclip2TextModel (with random weights) from the qihoo/fgclip2-base-patch16 style configuration
>>> model = Fgclip2TextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "fgclip2_text_model"
base_config_key = "text_config"
def __init__(
self,
vocab_size=32000,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
max_position_embeddings=64,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
# This differs from `CLIPTokenizer`'s default and from openai/fgclip2
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
pad_token_id=1,
bos_token_id=49406,
eos_token_id=49407,
projection_size=None,
keep_len=20,
longtext_len=196,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.attention_dropout = attention_dropout
self.projection_size = projection_size if projection_size is not None else hidden_size
self.keep_len = keep_len
self.longtext_len = longtext_len
class Fgclip2VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Fgclip2VisionModel`]. It is used to instantiate a
Fgclip2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Fgclip2
[qihoo/fgclip2-base-patch16](https://huggingface.co/qihoo/fgclip2-base-patch16) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
num_patches (`int`, *optional*, defaults to 256):
The number of patches in the image with the size of (`patch_size`, `patch_size`).
The image is resized to fill maximum of this number of patches, and to preserve
the aspect ratio. In case the resulted number of patches is lower, the image is
padded in "patch" dimension.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
Example:
```python
>>> from transformers import Fgclip2VisionConfig, Fgclip2VisionModel
>>> # Initializing a Fgclip2VisionConfig with qihoo/fgclip2-base-patch16 style configuration
>>> configuration = Fgclip2VisionConfig()
>>> # Initializing a Fgclip2VisionModel (with random weights) from the qihoo/fgclip2-base-patch16 style configuration
>>> model = Fgclip2VisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "fgclip2_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
num_patches=256,
patch_size=16,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.num_patches = num_patches
class Fgclip2Config(PretrainedConfig):
r"""
[`Fgclip2Config`] is the configuration class to store the configuration of a [`Fgclip2Model`]. It is used to
instantiate a Fgclip2 model according to the specified arguments, defining the text model and vision model configs.
Instantiating a configuration with the defaults will yield a similar configuration to that of the Fgclip2
[qihoo/fgclip2-base-patch16](https://huggingface.co/qihoo/fgclip2-base-patch16) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Fgclip2TextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Fgclip2VisionConfig`].
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import Fgclip2Config, Fgclip2Model
>>> # Initializing a Fgclip2Config with qihoo/fgclip2-base-patch16 style configuration
>>> configuration = Fgclip2Config()
>>> # Initializing a Fgclip2Model (with random weights) from the qihoo/fgclip2-base-patch16 style configuration
>>> model = Fgclip2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a Fgclip2Config from a Fgclip2TextConfig and a Fgclip2VisionConfig
>>> from transformers import Fgclip2TextConfig, Fgclip2VisionConfig
>>> # Initializing a Fgclip2Text and Fgclip2Vision configuration
>>> config_text = Fgclip2TextConfig()
>>> config_vision = Fgclip2VisionConfig()
>>> config = Fgclip2Config.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "fgclip2"
sub_configs = {"text_config": Fgclip2TextConfig, "vision_config": Fgclip2VisionConfig}
def __init__(self, text_config=None, vision_config=None, **kwargs):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `Fgclip2TextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. initializing the `Fgclip2VisionConfig` with default values.")
self.text_config = Fgclip2TextConfig(**text_config)
self.vision_config = Fgclip2VisionConfig(**vision_config)
self.initializer_factor = 1.0
__all__ = ["Fgclip2Config", "Fgclip2TextConfig", "Fgclip2VisionConfig"]
|