|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class Fgclip2TextConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Fgclip2TextModel`]. It is used to instantiate a |
|
Fgclip2 text encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the text encoder of the Fgclip2 |
|
[qihoo360/fg-clip2-base](https://huggingface.co/qihoo360/fg-clip2-base) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the Fgclip2 text model. Defines the number of different tokens that can be represented by |
|
the `inputs_ids` passed when calling [`Fgclip2Model`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
max_position_embeddings (`int`, *optional*, defaults to 64): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the layer normalization layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
pad_token_id (`int`, *optional*, defaults to 1): |
|
The id of the padding token in the vocabulary. |
|
bos_token_id (`int`, *optional*, defaults to 49406): |
|
The id of the beginning-of-sequence token in the vocabulary. |
|
eos_token_id (`int`, *optional*, defaults to 49407): |
|
The id of the end-of-sequence token in the vocabulary. |
|
projection_size (`int`, *optional*, defaults to `hidden_size`): |
|
The size of the projection head. |
|
keep_len (`int`, *optional*, defaults to 20): |
|
When processing long texts, the retained tokens are used for handling short text lengths. |
|
For details, please refer to the FG-CLIP 'https://arxiv.org/abs/2505.05071' paper. |
|
longtext_len (`int`, *optional*, defaults to 196): |
|
The maximum number of tokens in long texts that can be processed |
|
|
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Fgclip2TextConfig, Fgclip2TextModel |
|
|
|
>>> # Initializing a Fgclip2TextConfig with qihoo/fgclip2-base-patch16 style configuration |
|
>>> configuration = Fgclip2TextConfig() |
|
|
|
>>> # Initializing a Fgclip2TextModel (with random weights) from the qihoo/fgclip2-base-patch16 style configuration |
|
>>> model = Fgclip2TextModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "fgclip2_text_model" |
|
base_config_key = "text_config" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
max_position_embeddings=64, |
|
hidden_act="gelu_pytorch_tanh", |
|
layer_norm_eps=1e-6, |
|
attention_dropout=0.0, |
|
|
|
|
|
pad_token_id=1, |
|
bos_token_id=49406, |
|
eos_token_id=49407, |
|
projection_size=None, |
|
keep_len=20, |
|
longtext_len=196, |
|
**kwargs, |
|
): |
|
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.max_position_embeddings = max_position_embeddings |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
self.attention_dropout = attention_dropout |
|
self.projection_size = projection_size if projection_size is not None else hidden_size |
|
self.keep_len = keep_len |
|
self.longtext_len = longtext_len |
|
|
|
|
|
class Fgclip2VisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Fgclip2VisionModel`]. It is used to instantiate a |
|
Fgclip2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Fgclip2 |
|
[qihoo/fgclip2-base-patch16](https://huggingface.co/qihoo/fgclip2-base-patch16) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_channels (`int`, *optional*, defaults to 3): |
|
Number of channels in the input images. |
|
num_patches (`int`, *optional*, defaults to 256): |
|
The number of patches in the image with the size of (`patch_size`, `patch_size`). |
|
The image is resized to fill maximum of this number of patches, and to preserve |
|
the aspect ratio. In case the resulted number of patches is lower, the image is |
|
padded in "patch" dimension. |
|
patch_size (`int`, *optional*, defaults to 16): |
|
The size (resolution) of each patch. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the layer normalization layers. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Fgclip2VisionConfig, Fgclip2VisionModel |
|
|
|
>>> # Initializing a Fgclip2VisionConfig with qihoo/fgclip2-base-patch16 style configuration |
|
>>> configuration = Fgclip2VisionConfig() |
|
|
|
>>> # Initializing a Fgclip2VisionModel (with random weights) from the qihoo/fgclip2-base-patch16 style configuration |
|
>>> model = Fgclip2VisionModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "fgclip2_vision_model" |
|
base_config_key = "vision_config" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
num_channels=3, |
|
num_patches=256, |
|
patch_size=16, |
|
hidden_act="gelu_pytorch_tanh", |
|
layer_norm_eps=1e-6, |
|
attention_dropout=0.0, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
self.num_patches = num_patches |
|
|
|
|
|
class Fgclip2Config(PretrainedConfig): |
|
r""" |
|
[`Fgclip2Config`] is the configuration class to store the configuration of a [`Fgclip2Model`]. It is used to |
|
instantiate a Fgclip2 model according to the specified arguments, defining the text model and vision model configs. |
|
Instantiating a configuration with the defaults will yield a similar configuration to that of the Fgclip2 |
|
[qihoo/fgclip2-base-patch16](https://huggingface.co/qihoo/fgclip2-base-patch16) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
text_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`Fgclip2TextConfig`]. |
|
vision_config (`dict`, *optional*): |
|
Dictionary of configuration options used to initialize [`Fgclip2VisionConfig`]. |
|
kwargs (*optional*): |
|
Dictionary of keyword arguments. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Fgclip2Config, Fgclip2Model |
|
|
|
>>> # Initializing a Fgclip2Config with qihoo/fgclip2-base-patch16 style configuration |
|
>>> configuration = Fgclip2Config() |
|
|
|
>>> # Initializing a Fgclip2Model (with random weights) from the qihoo/fgclip2-base-patch16 style configuration |
|
>>> model = Fgclip2Model(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
|
|
>>> # We can also initialize a Fgclip2Config from a Fgclip2TextConfig and a Fgclip2VisionConfig |
|
>>> from transformers import Fgclip2TextConfig, Fgclip2VisionConfig |
|
|
|
>>> # Initializing a Fgclip2Text and Fgclip2Vision configuration |
|
>>> config_text = Fgclip2TextConfig() |
|
>>> config_vision = Fgclip2VisionConfig() |
|
|
|
>>> config = Fgclip2Config.from_text_vision_configs(config_text, config_vision) |
|
```""" |
|
|
|
model_type = "fgclip2" |
|
sub_configs = {"text_config": Fgclip2TextConfig, "vision_config": Fgclip2VisionConfig} |
|
|
|
def __init__(self, text_config=None, vision_config=None, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
if text_config is None: |
|
text_config = {} |
|
logger.info("`text_config` is `None`. Initializing the `Fgclip2TextConfig` with default values.") |
|
|
|
if vision_config is None: |
|
vision_config = {} |
|
logger.info("`vision_config` is `None`. initializing the `Fgclip2VisionConfig` with default values.") |
|
|
|
self.text_config = Fgclip2TextConfig(**text_config) |
|
self.vision_config = Fgclip2VisionConfig(**vision_config) |
|
|
|
self.initializer_factor = 1.0 |
|
|
|
|
|
__all__ = ["Fgclip2Config", "Fgclip2TextConfig", "Fgclip2VisionConfig"] |
|
|