--- language: - en - zh library_name: transformers license: apache-2.0 pipeline_tag: zero-shot-image-classification tags: - clip --- # FG-CLIP 2: A Bilingual Fine-grained Vision-language Alignment Model Code: https://github.com/360CVGroup/FG-CLIP Project page: https://360cvgroup.github.io/FG-CLIP FG-CLIP 2 is the foundation model for fine-grained vision-language understanding in both English and Chinese. Across 29 datasets and 8 diverse tasks, it consistently surpasses recent strong baselines such as SigLIP 2 and MetaCLIP 2, achieving the best reported performance to date in both languages. **[FG-CLIP 2: A Bilingual Fine-grained Vision-language Alignment Model](https://arxiv.org/abs/2510.10921)**
Chunyu Xie*, Bin Wang*, Fanjing Kong, Jincheng Li, Dawei Liang, Ji Ao, Dawei Leng†, Yuhui Yin(*Equal Contribution, †Corresponding Author)
[![arXiv](https://img.shields.io/badge/arXiv-2510.10921-b31b1b.svg)](https://arxiv.org/abs/2510.10921) [![HF-model](https://img.shields.io/badge/Model-Collection🤗-yellow.svg)](https://huggingface.co/collections/qihoo360/fg-clip-2-68ecbf9c548623bb78bc7913) [![HF-data](https://img.shields.io/badge/Benchmark-Collection🤗-yellow.svg)](https://huggingface.co/collections/qihoo360/fg-clip-2-68ecbf9c548623bb78bc7913) [![API+MCP](https://img.shields.io/badge/API/MCP-FG--CLIPv2-green.svg)](https://research.360.cn/sass/index) **[FG-CLIP: Fine-Grained Visual and Textual Alignment](https://arxiv.org/abs/2505.05071)** ([code branch: v1.0](https://github.com/360CVGroup/FG-CLIP/tree/v1.0))
Chunyu Xie*, Bin Wang*, Fanjing Kong, Jincheng Li, Dawei Liang, Gengshen Zhang, Dawei Leng†, Yuhui Yin (*Equal Contribution, †Corresponding Author)
[![arXiv](https://img.shields.io/badge/arXiv-2505.05071-b31b1b.svg)](https://arxiv.org/abs/2505.05071) [![ICML](https://img.shields.io/badge/ICML-2025-blue.svg)](https://icml.cc/Conferences/2025) [![HF-model](https://img.shields.io/badge/Model-Collection🤗-yellow.svg)](https://huggingface.co/collections/qihoo360/fg-clip-681da45d4acfb65c240a6d08) [![HF-data](https://img.shields.io/badge/Data-FineHARD🤗-yellow.svg)](https://huggingface.co/datasets/qihoo360/FineHARD) [![DeepWiki](https://img.shields.io/badge/DeepWiki-FG--CLIP-blue.svg?logo=)](https://deepwiki.com/360CVGroup/FG-CLIP)

## Quick Start 🤗 ### Load Model ```python import torch from PIL import Image from transformers import ( AutoImageProcessor, AutoTokenizer, AutoModelForCausalLM, ) model_root = "qihoo360/fg-clip2-base" model = AutoModelForCausalLM.from_pretrained(model_root,trust_remote_code=True).cuda() device = model.device tokenizer = AutoTokenizer.from_pretrained(model_root) image_processor = AutoImageProcessor.from_pretrained(model_root) ``` ### Retrieval ```python def determine_max_value(image): w,h = image.size max_val = (w//16)*(h//16) if max_val > 784: return 1024 elif max_val > 576: return 784 elif max_val > 256: return 576 elif max_val > 128: return 256 else: return 128 img_root = "cat_dfclor.jpg" image = Image.open(img_root).convert("RGB") image_input = image_processor(images=image, max_num_patches=determine_max_value(image), return_tensors="pt").to(device) # NOTE Short captions: max_length=64 walk_type="short"(default) # NOTE Long captions: max_length=196 walk_type="long" captions = [ "一个简约风格的卧室角落,黑色金属衣架上挂着多件米色和白色的衣物,下方架子放着两双浅色鞋子,旁边是一盆绿植,左侧可见一张铺有白色床单和灰色枕头的床。", "一个简约风格的卧室角落,黑色金属衣架上挂着多件红色和蓝色的衣物,下方架子放着两双黑色高跟鞋,旁边是一盆绿植,左侧可见一张铺有白色床单和灰色枕头的床。", "一个简约风格的卧室角落,黑色金属衣架上挂着多件米色和白色的衣物,下方架子放着两双运动鞋,旁边是一盆仙人掌,左侧可见一张铺有白色床单和灰色枕头的床。", "一个繁忙的街头市场,摊位上摆满水果,背景是高楼大厦,人们在喧闹中购物。" ] captions = [caption.lower() for caption in captions] caption_input = tokenizer(captions, padding="max_length", max_length=196, truncation=True, return_tensors="pt").to(device) with torch.no_grad(): image_feature = model.get_image_features(**image_input) text_feature = model.get_text_features(**caption_input,walk_type="long") image_feature = image_feature / image_feature.norm(p=2, dim=-1, keepdim=True) text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True) logits_per_image = image_feature @ text_feature.T logit_scale, logit_bias = model.logit_scale.to(text_feature.device), model.logit_bias.to(text_feature.device) logits_per_image = logits_per_image * logit_scale.exp() + logit_bias # The original Github example does not print probabilities for retrieval, keeping consistency. ```

### Dense feature effect display ```python import math import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt img_root = "cat_dfclor.jpg" image = Image.open(img_root).convert("RGB") # The 'resize_short_edge' function is not defined in the snippet or provided context. # Assuming 'cat_dfclor.jpg' is pre-processed or the model handles sizing. # image = resize_short_edge(image,target_size=2048) image_input = image_processor(images=image, max_num_patches=16384, return_tensors="pt").to(device) captions = ["电脑","黑猫","窗户","window","white cat","book"] with torch.no_grad(): dense_image_feature = model.get_image_dense_feature(**image_input) spatial_values = image_input["spatial_shapes"][0] real_h = spatial_values[0].item() real_w = spatial_values[1].item() real_pixel_tokens_num = real_w*real_h dense_image_feature = dense_image_feature[0][:real_pixel_tokens_num] captions = [caption.lower() for caption in captions] caption_input = tokenizer(captions, padding="max_length", max_length=64, truncation=True, return_tensors="pt").to(device) text_feature = model.get_text_features(**caption_input, walk_type="box") text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True) dense_image_feature = dense_image_feature / dense_image_feature.norm(p=2, dim=-1, keepdim=True) similarity = dense_image_feature @ text_feature.T similarity = similarity.cpu() num_classes = len(captions) cols = 3 rows = (num_classes + cols - 1) // cols aspect_ratio = real_w / real_h fig_width_inch = 3 * cols fig_height_inch = fig_width_inch / aspect_ratio * rows / cols fig, axes = plt.subplots(rows, cols, figsize=(fig_width_inch, fig_height_inch)) fig.subplots_adjust(wspace=0.01, hspace=0.01) if num_classes == 1: axes = [axes] else: axes = axes.flatten() for cls_index in range(num_classes): similarity_map = similarity[:, cls_index].cpu().numpy() show_image = similarity_map.reshape((real_h, real_w)) ax = axes[cls_index] ax.imshow(show_image, cmap='viridis', aspect='equal') ax.set_xticks([]) ax.set_yticks([]) ax.axis('off') for idx in range(num_classes, len(axes)): axes[idx].axis('off') savename = "FGCLIP2_dfcolor_cat_all_2K.png" plt.savefig(savename, dpi=150, bbox_inches='tight', pad_inches=0.05) plt.close() ```

## Citation If you find FG-CLIP 2 useful for your research and applications, please cite using this BibTeX: ``` @article{xie2025fg2, title={FG-CLIP 2: A Bilingual Fine-grained Vision-language Alignment Model}, author={Xie, Chunyu and Wang, Bin and Kong, Fanjing and Li, Jincheng and Liang, Dawei and Ao, Ji and Leng, Dawei and Yin, Yuhui}, journal={arXiv preprint arXiv:2510.10921}, year={2025} } ``` ``` @article{xie2025fg, title={FG-CLIP: Fine-Grained Visual and Textual Alignment}, author={Xie, Chunyu and Wang, Bin and Kong, Fanjing and Li, Jincheng and Liang, Dawei and Zhang, Gengshen and Leng, Dawei and Yin, Yuhui}, journal={arXiv preprint arXiv:2505.05071}, year={2025} } ``` ## License This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses. The content of this project itself is licensed under the [Apache license 2.0](./LICENSE).