File size: 13,833 Bytes
24f23e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
library_name: pytorch
license: other
tags:
- generative_ai
- android
pipeline_tag: unconditional-image-generation

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/controlnet_canny/web-assets/model_demo.png)

# ControlNet-Canny: Optimized for Mobile Deployment
## Generating visual arts from text prompt and input guiding image


On-device, high-resolution image synthesis from text and image prompts. ControlNet guides Stable-diffusion with provided input image to generate accurate images from given input prompt.

This model is an implementation of ControlNet-Canny found [here](https://github.com/lllyasviel/ControlNet).


This repository provides scripts to run ControlNet-Canny on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/controlnet_canny).


### Model Details

- **Model Type:** Model_use_case.image_generation
- **Model Stats:**
  - Input: Text prompt and input image as a reference
  - Conditioning Input: Canny-Edge
  - Text Encoder Number of parameters: 340M
  - UNet Number of parameters: 865M
  - VAE Decoder Number of parameters: 83M
  - ControlNet Number of parameters: 361M
  - Model size: 1.4GB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| text_encoder | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 5.37 ms | 0 - 3 MB | NPU | Use Export Script |
| text_encoder | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 5.903 ms | 0 - 10 MB | NPU | Use Export Script |
| text_encoder | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 5.395 ms | 0 - 2 MB | NPU | Use Export Script |
| text_encoder | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 5.412 ms | 0 - 2 MB | NPU | Use Export Script |
| text_encoder | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 5.903 ms | 0 - 10 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 5.432 ms | 0 - 3 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 5.743 ms | 0 - 3 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 3.872 ms | 0 - 18 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 4.067 ms | 0 - 20 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 3.481 ms | 0 - 14 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 3.255 ms | 0 - 13 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 5.792 ms | 1 - 1 MB | NPU | Use Export Script |
| text_encoder | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 5.958 ms | 158 - 158 MB | NPU | Use Export Script |
| unet | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 110.879 ms | 13 - 15 MB | NPU | Use Export Script |
| unet | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 107.956 ms | 6 - 13 MB | NPU | Use Export Script |
| unet | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 116.595 ms | 13 - 15 MB | NPU | Use Export Script |
| unet | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 115.724 ms | 13 - 16 MB | NPU | Use Export Script |
| unet | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 107.956 ms | 6 - 13 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 117.156 ms | 13 - 16 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 116.818 ms | 0 - 883 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 81.085 ms | 13 - 31 MB | NPU | Use Export Script |
| unet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 84.025 ms | 13 - 32 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 70.612 ms | 13 - 27 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 70.807 ms | 13 - 28 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 116.726 ms | 13 - 13 MB | NPU | Use Export Script |
| unet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 117.502 ms | 829 - 829 MB | NPU | Use Export Script |
| vae | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 268.758 ms | 0 - 3 MB | NPU | Use Export Script |
| vae | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 248.983 ms | 0 - 10 MB | NPU | Use Export Script |
| vae | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 272.989 ms | 0 - 2 MB | NPU | Use Export Script |
| vae | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 284.628 ms | 0 - 2 MB | NPU | Use Export Script |
| vae | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 248.983 ms | 0 - 10 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 270.831 ms | 0 - 3 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 273.364 ms | 0 - 66 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 205.993 ms | 0 - 18 MB | NPU | Use Export Script |
| vae | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 204.786 ms | 3 - 22 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 194.607 ms | 0 - 14 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 193.998 ms | 3 - 17 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 266.935 ms | 0 - 0 MB | NPU | Use Export Script |
| vae | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 266.448 ms | 63 - 63 MB | NPU | Use Export Script |
| controlnet | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 83.197 ms | 2 - 4 MB | NPU | Use Export Script |
| controlnet | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 81.755 ms | 2 - 11 MB | NPU | Use Export Script |
| controlnet | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 83.451 ms | 2 - 5 MB | NPU | Use Export Script |
| controlnet | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 83.565 ms | 2 - 4 MB | NPU | Use Export Script |
| controlnet | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 81.755 ms | 2 - 11 MB | NPU | Use Export Script |
| controlnet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 83.39 ms | 2 - 5 MB | NPU | Use Export Script |
| controlnet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 86.158 ms | 0 - 384 MB | NPU | Use Export Script |
| controlnet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 58.723 ms | 2 - 21 MB | NPU | Use Export Script |
| controlnet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 59.623 ms | 32 - 50 MB | NPU | Use Export Script |
| controlnet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 56.385 ms | 2 - 16 MB | NPU | Use Export Script |
| controlnet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 57.339 ms | 31 - 45 MB | NPU | Use Export Script |
| controlnet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 85.054 ms | 2 - 2 MB | NPU | Use Export Script |
| controlnet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 80.108 ms | 351 - 351 MB | NPU | Use Export Script |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[controlnet-canny]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.controlnet_canny.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.controlnet_canny.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.controlnet_canny.export
```
```
Profiling Results
------------------------------------------------------------
text_encoder
Device                          : cs_8550 (ANDROID 12)                 
Runtime                         : QNN_CONTEXT_BINARY                   
Estimated inference time (ms)   : 5.4                                  
Estimated peak memory usage (MB): [0, 3]                               
Total # Ops                     : 438                                  
Compute Unit(s)                 : npu (438 ops) gpu (0 ops) cpu (0 ops)

------------------------------------------------------------
unet
Device                          : cs_8550 (ANDROID 12)                  
Runtime                         : QNN_CONTEXT_BINARY                    
Estimated inference time (ms)   : 110.9                                 
Estimated peak memory usage (MB): [13, 15]                              
Total # Ops                     : 4055                                  
Compute Unit(s)                 : npu (4055 ops) gpu (0 ops) cpu (0 ops)

------------------------------------------------------------
vae
Device                          : cs_8550 (ANDROID 12)                 
Runtime                         : QNN_CONTEXT_BINARY                   
Estimated inference time (ms)   : 268.8                                
Estimated peak memory usage (MB): [0, 3]                               
Total # Ops                     : 175                                  
Compute Unit(s)                 : npu (175 ops) gpu (0 ops) cpu (0 ops)

------------------------------------------------------------
controlnet
Device                          : cs_8550 (ANDROID 12)                 
Runtime                         : QNN_CONTEXT_BINARY                   
Estimated inference time (ms)   : 83.2                                 
Estimated peak memory usage (MB): [2, 4]                               
Total # Ops                     : 664                                  
Compute Unit(s)                 : npu (664 ops) gpu (0 ops) cpu (0 ops)
```





## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on ControlNet-Canny's performance across various devices [here](https://aihub.qualcomm.com/models/controlnet_canny).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of ControlNet-Canny can be found
  [here](https://github.com/lllyasviel/ControlNet/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543)
* [Source Model Implementation](https://github.com/lllyasviel/ControlNet)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).