File size: 19,802 Bytes
83c145e
 
84b8214
83c145e
 
0b60cb3
83c145e
 
 
 
 
 
 
 
af6b6f7
83c145e
 
56645e0
af6b6f7
 
83c145e
 
 
 
 
 
 
84b8214
83c145e
 
 
b9f72de
182cefb
84b8214
182cefb
83c145e
84b8214
dbabf92
1a9f728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182cefb
1a9f728
 
182cefb
1a9f728
 
182cefb
1a9f728
182cefb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c145e
da87bb8
 
83c145e
 
 
 
1af0e40
83c145e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbabf92
 
 
84b8214
 
3a9926f
1a9f728
84b8214
 
83c145e
da87bb8
 
83c145e
 
da87bb8
83c145e
 
 
 
 
 
 
 
 
 
 
 
129923c
83c145e
 
129923c
83c145e
 
1af0e40
83c145e
129923c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c145e
 
 
 
 
 
 
 
 
 
 
 
adb7c99
 
 
a323d9d
83c145e
 
 
 
 
 
 
 
 
adb7c99
 
 
 
a323d9d
83c145e
 
 
 
 
 
 
 
 
da87bb8
83c145e
 
 
 
 
3a9926f
83c145e
 
 
 
 
3a9926f
83c145e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbabf92
83c145e
1af0e40
 
dbabf92
 
 
83c145e
 
 
 
 
dbabf92
 
83c145e
3a34c61
83c145e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: image-segmentation

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/deeplabv3_plus_mobilenet/web-assets/model_demo.png)

# DeepLabV3-Plus-MobileNet: Optimized for Mobile Deployment
## Deep Convolutional Neural Network model for semantic segmentation


DeepLabV3 is designed for semantic segmentation at multiple scales, trained on the various datasets. It uses MobileNet as a backbone.

This model is an implementation of DeepLabV3-Plus-MobileNet found [here](https://github.com/jfzhang95/pytorch-deeplab-xception).


This repository provides scripts to run DeepLabV3-Plus-MobileNet on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/deeplabv3_plus_mobilenet).


### Model Details

- **Model Type:** Model_use_case.semantic_segmentation
- **Model Stats:**
  - Model checkpoint: VOC2012
  - Input resolution: 513x513
  - Number of output classes: 21
  - Number of parameters: 5.80M
  - Model size (float): 22.2 MB
  - Model size (w8a16): 6.67 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| DeepLabV3-Plus-MobileNet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 62.603 ms | 0 - 28 MB | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
| DeepLabV3-Plus-MobileNet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 58.62 ms | 2 - 32 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.dlc) |
| DeepLabV3-Plus-MobileNet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 19.174 ms | 0 - 45 MB | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
| DeepLabV3-Plus-MobileNet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 21.272 ms | 3 - 49 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.dlc) |
| DeepLabV3-Plus-MobileNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 13.008 ms | 0 - 12 MB | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
| DeepLabV3-Plus-MobileNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 11.24 ms | 3 - 12 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.dlc) |
| DeepLabV3-Plus-MobileNet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 19.529 ms | 0 - 29 MB | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
| DeepLabV3-Plus-MobileNet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 17.545 ms | 2 - 33 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.dlc) |
| DeepLabV3-Plus-MobileNet | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 62.603 ms | 0 - 28 MB | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
| DeepLabV3-Plus-MobileNet | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 58.62 ms | 2 - 32 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.dlc) |
| DeepLabV3-Plus-MobileNet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 12.999 ms | 0 - 13 MB | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
| DeepLabV3-Plus-MobileNet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 11.222 ms | 3 - 15 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.dlc) |
| DeepLabV3-Plus-MobileNet | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 22.216 ms | 0 - 30 MB | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
| DeepLabV3-Plus-MobileNet | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 19.839 ms | 3 - 45 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.dlc) |
| DeepLabV3-Plus-MobileNet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 13.023 ms | 0 - 11 MB | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
| DeepLabV3-Plus-MobileNet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 11.216 ms | 3 - 14 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.dlc) |
| DeepLabV3-Plus-MobileNet | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 19.529 ms | 0 - 29 MB | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
| DeepLabV3-Plus-MobileNet | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 17.545 ms | 2 - 33 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.dlc) |
| DeepLabV3-Plus-MobileNet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 13.018 ms | 0 - 12 MB | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
| DeepLabV3-Plus-MobileNet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 11.296 ms | 3 - 15 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.dlc) |
| DeepLabV3-Plus-MobileNet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 11.005 ms | 1 - 39 MB | NPU | [DeepLabV3-Plus-MobileNet.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.onnx) |
| DeepLabV3-Plus-MobileNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 9.086 ms | 0 - 46 MB | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
| DeepLabV3-Plus-MobileNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 7.871 ms | 3 - 44 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.dlc) |
| DeepLabV3-Plus-MobileNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 7.59 ms | 1 - 49 MB | NPU | [DeepLabV3-Plus-MobileNet.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.onnx) |
| DeepLabV3-Plus-MobileNet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 7.193 ms | 0 - 32 MB | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
| DeepLabV3-Plus-MobileNet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 7.663 ms | 3 - 40 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.dlc) |
| DeepLabV3-Plus-MobileNet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 6.283 ms | 2 - 40 MB | NPU | [DeepLabV3-Plus-MobileNet.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.onnx) |
| DeepLabV3-Plus-MobileNet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 13.085 ms | 23 - 23 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.dlc) |
| DeepLabV3-Plus-MobileNet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 11.929 ms | 10 - 10 MB | NPU | [DeepLabV3-Plus-MobileNet.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.onnx) |
| DeepLabV3-Plus-MobileNet | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 21.552 ms | 2 - 40 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.dlc) |
| DeepLabV3-Plus-MobileNet | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 11.637 ms | 2 - 52 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.dlc) |
| DeepLabV3-Plus-MobileNet | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 8.296 ms | 2 - 15 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.dlc) |
| DeepLabV3-Plus-MobileNet | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 9.049 ms | 2 - 41 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.dlc) |
| DeepLabV3-Plus-MobileNet | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 43.981 ms | 2 - 91 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.dlc) |
| DeepLabV3-Plus-MobileNet | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 21.552 ms | 2 - 40 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.dlc) |
| DeepLabV3-Plus-MobileNet | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 8.279 ms | 2 - 15 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.dlc) |
| DeepLabV3-Plus-MobileNet | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 12.354 ms | 2 - 44 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.dlc) |
| DeepLabV3-Plus-MobileNet | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 8.279 ms | 2 - 14 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.dlc) |
| DeepLabV3-Plus-MobileNet | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 9.049 ms | 2 - 41 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.dlc) |
| DeepLabV3-Plus-MobileNet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 8.289 ms | 2 - 14 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.dlc) |
| DeepLabV3-Plus-MobileNet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 74.709 ms | 92 - 121 MB | NPU | [DeepLabV3-Plus-MobileNet.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.onnx) |
| DeepLabV3-Plus-MobileNet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 6.056 ms | 2 - 54 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.dlc) |
| DeepLabV3-Plus-MobileNet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 59.155 ms | 96 - 274 MB | NPU | [DeepLabV3-Plus-MobileNet.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.onnx) |
| DeepLabV3-Plus-MobileNet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 5.052 ms | 2 - 45 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.dlc) |
| DeepLabV3-Plus-MobileNet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 53.303 ms | 100 - 276 MB | NPU | [DeepLabV3-Plus-MobileNet.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.onnx) |
| DeepLabV3-Plus-MobileNet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 10.151 ms | 18 - 18 MB | NPU | [DeepLabV3-Plus-MobileNet.dlc](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.dlc) |
| DeepLabV3-Plus-MobileNet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 419.851 ms | 131 - 131 MB | NPU | [DeepLabV3-Plus-MobileNet.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet_w8a16.onnx) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.deeplabv3_plus_mobilenet.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.deeplabv3_plus_mobilenet.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.deeplabv3_plus_mobilenet.export
```
```
Profiling Results
------------------------------------------------------------
DeepLabV3-Plus-MobileNet
Device                          : cs_8275 (ANDROID 14)                 
Runtime                         : TFLITE                               
Estimated inference time (ms)   : 62.6                                 
Estimated peak memory usage (MB): [0, 28]                              
Total # Ops                     : 101                                  
Compute Unit(s)                 : npu (101 ops) gpu (0 ops) cpu (0 ops)
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/deeplabv3_plus_mobilenet/qai_hub_models/models/DeepLabV3-Plus-MobileNet/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.deeplabv3_plus_mobilenet import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.deeplabv3_plus_mobilenet.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.deeplabv3_plus_mobilenet.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on DeepLabV3-Plus-MobileNet's performance across various devices [here](https://aihub.qualcomm.com/models/deeplabv3_plus_mobilenet).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of DeepLabV3-Plus-MobileNet can be found
  [here](https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587)
* [Source Model Implementation](https://github.com/jfzhang95/pytorch-deeplab-xception)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).