File size: 16,864 Bytes
72e5add
 
e58c5be
72e5add
 
 
 
4aee4c3
72e5add
 
 
31e6857
72e5add
 
 
 
223c31d
72e5add
 
9ff9f99
223c31d
 
72e5add
 
 
 
 
90be9bc
72e5add
 
e58c5be
72e5add
 
 
 
e58c5be
41dcae8
72e5add
e58c5be
9378e26
66dd077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72e5add
bd4b01d
 
72e5add
 
 
 
66db89e
72e5add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90be9bc
bd4b01d
 
72e5add
 
bd4b01d
72e5add
 
 
 
 
 
 
 
 
 
 
 
4de1bc5
72e5add
 
4de1bc5
72e5add
 
66db89e
72e5add
4de1bc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72e5add
 
 
 
 
 
 
 
 
 
 
 
60cc6d1
 
 
fa3ed7e
72e5add
 
 
 
 
 
 
 
 
60cc6d1
 
 
 
fa3ed7e
72e5add
 
 
 
 
 
31e6857
72e5add
 
bd4b01d
72e5add
 
 
 
 
4df1308
72e5add
 
 
 
 
4df1308
72e5add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d22e903
72e5add
66db89e
 
d22e903
 
 
72e5add
 
 
 
 
d22e903
 
72e5add
6a7f2a6
72e5add
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
---
library_name: pytorch
license: other
tags:
- backbone
- real_time
- android
pipeline_tag: image-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/mobilenet_v2/web-assets/model_demo.png)

# MobileNet-v2: Optimized for Mobile Deployment
## Imagenet classifier and general purpose backbone


MobileNetV2 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of MobileNet-v2 found [here](https://github.com/tonylins/pytorch-mobilenet-v2/tree/master).


This repository provides scripts to run MobileNet-v2 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/mobilenet_v2).



### Model Details

- **Model Type:** Model_use_case.image_classification
- **Model Stats:**
  - Model checkpoint: Imagenet
  - Input resolution: 224x224
  - Number of parameters: 3.49M
  - Model size (float): 13.3 MB
  - Model size (w8a16): 4.39 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| MobileNet-v2 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 2.741 ms | 0 - 24 MB | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
| MobileNet-v2 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 2.578 ms | 1 - 22 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.dlc) |
| MobileNet-v2 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.031 ms | 0 - 37 MB | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
| MobileNet-v2 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.53 ms | 0 - 33 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.dlc) |
| MobileNet-v2 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.862 ms | 0 - 67 MB | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
| MobileNet-v2 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.845 ms | 0 - 47 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.dlc) |
| MobileNet-v2 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.198 ms | 0 - 24 MB | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
| MobileNet-v2 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.171 ms | 1 - 22 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.dlc) |
| MobileNet-v2 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 2.741 ms | 0 - 24 MB | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
| MobileNet-v2 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 2.578 ms | 1 - 22 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.dlc) |
| MobileNet-v2 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.866 ms | 0 - 67 MB | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
| MobileNet-v2 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.845 ms | 0 - 46 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.dlc) |
| MobileNet-v2 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.429 ms | 0 - 29 MB | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
| MobileNet-v2 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.416 ms | 1 - 28 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.dlc) |
| MobileNet-v2 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.87 ms | 0 - 68 MB | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
| MobileNet-v2 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.845 ms | 0 - 46 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.dlc) |
| MobileNet-v2 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.198 ms | 0 - 24 MB | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
| MobileNet-v2 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.171 ms | 1 - 22 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.dlc) |
| MobileNet-v2 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.865 ms | 0 - 68 MB | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
| MobileNet-v2 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 0.845 ms | 0 - 47 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.dlc) |
| MobileNet-v2 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 0.755 ms | 0 - 24 MB | NPU | [MobileNet-v2.onnx.zip](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.onnx.zip) |
| MobileNet-v2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.567 ms | 0 - 38 MB | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
| MobileNet-v2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.556 ms | 0 - 33 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.dlc) |
| MobileNet-v2 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.497 ms | 0 - 31 MB | NPU | [MobileNet-v2.onnx.zip](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.onnx.zip) |
| MobileNet-v2 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.551 ms | 0 - 29 MB | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
| MobileNet-v2 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.541 ms | 0 - 23 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.dlc) |
| MobileNet-v2 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 0.506 ms | 0 - 23 MB | NPU | [MobileNet-v2.onnx.zip](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.onnx.zip) |
| MobileNet-v2 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.011 ms | 53 - 53 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.dlc) |
| MobileNet-v2 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.817 ms | 7 - 7 MB | NPU | [MobileNet-v2.onnx.zip](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.onnx.zip) |
| MobileNet-v2 | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1.776 ms | 0 - 20 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.dlc) |
| MobileNet-v2 | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 0.978 ms | 0 - 32 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.dlc) |
| MobileNet-v2 | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.822 ms | 0 - 28 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.dlc) |
| MobileNet-v2 | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.024 ms | 0 - 20 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.dlc) |
| MobileNet-v2 | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 2.812 ms | 0 - 24 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.dlc) |
| MobileNet-v2 | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1.776 ms | 0 - 20 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.dlc) |
| MobileNet-v2 | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.824 ms | 0 - 28 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.dlc) |
| MobileNet-v2 | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.255 ms | 0 - 29 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.dlc) |
| MobileNet-v2 | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.816 ms | 0 - 29 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.dlc) |
| MobileNet-v2 | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.024 ms | 0 - 20 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.dlc) |
| MobileNet-v2 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 0.82 ms | 0 - 28 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.dlc) |
| MobileNet-v2 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 84.583 ms | 0 - 190 MB | NPU | [MobileNet-v2.onnx.zip](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.onnx.zip) |
| MobileNet-v2 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.562 ms | 0 - 33 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.dlc) |
| MobileNet-v2 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 67.641 ms | 4 - 1977 MB | NPU | [MobileNet-v2.onnx.zip](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.onnx.zip) |
| MobileNet-v2 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.362 ms | 0 - 32 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.dlc) |
| MobileNet-v2 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 69.891 ms | 3 - 769 MB | NPU | [MobileNet-v2.onnx.zip](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.onnx.zip) |
| MobileNet-v2 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.97 ms | 23 - 23 MB | NPU | [MobileNet-v2.dlc](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.dlc) |
| MobileNet-v2 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 87.472 ms | 41 - 41 MB | NPU | [MobileNet-v2.onnx.zip](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2_w8a16.onnx.zip) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.mobilenet_v2.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.mobilenet_v2.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.mobilenet_v2.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/mobilenet_v2/qai_hub_models/models/MobileNet-v2/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.mobilenet_v2 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.mobilenet_v2.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.mobilenet_v2.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on MobileNet-v2's performance across various devices [here](https://aihub.qualcomm.com/models/mobilenet_v2).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of MobileNet-v2 can be found
  [here](https://github.com/tonylins/pytorch-mobilenet-v2/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
* [Source Model Implementation](https://github.com/tonylins/pytorch-mobilenet-v2/tree/master)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).