File size: 22,126 Bytes
280fa15
 
ab7b1a8
280fa15
 
 
1ca50b7
280fa15
 
 
 
 
 
 
 
7cd2c22
fcd5227
280fa15
 
 
 
 
9dc7697
280fa15
 
ab7b1a8
280fa15
 
 
 
1d91a64
 
 
 
280fa15
ab7b1a8
280fa15
28a55dc
af03bad
28a55dc
af03bad
28a55dc
af03bad
 
28a55dc
af03bad
28a55dc
af03bad
28a55dc
af03bad
28a55dc
af03bad
28a55dc
af03bad
28a55dc
af03bad
28a55dc
af03bad
 
28a55dc
af03bad
 
28a55dc
af03bad
 
28a55dc
af03bad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28a55dc
af03bad
 
 
 
 
 
 
28a55dc
af03bad
 
28a55dc
af03bad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280fa15
 
 
 
 
 
 
a8a8d2f
280fa15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dc7697
280fa15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ae2c7b
280fa15
 
3ae2c7b
280fa15
 
a8a8d2f
280fa15
3ae2c7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280fa15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd2c22
280fa15
 
 
 
 
7cd2c22
280fa15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8a8d2f
a7f7a38
280fa15
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
---
library_name: pytorch
license: other
tags:
- real_time
- android
pipeline_tag: object-detection

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/gear_guard_net/web-assets/model_demo.png)

# PPE-Detection: Optimized for Mobile Deployment
## Object detection for personal protective equipments (PPE)

Detect if a person is wearing personal protective equipments (PPE) in real-time.  This model's architecture was developed by Qualcomm. The model was trained by Qualcomm on a proprietary dataset, but can be used on any image.

This repository provides scripts to run PPE-Detection on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/gear_guard_net).



### Model Details

- **Model Type:** Model_use_case.object_detection
- **Model Stats:**
  - Inference latency: RealTime
  - Input resolution: 320x192
  - Number of output classes: 2
  - Number of parameters: 6.19M
  - Model size (float): 23.6 MB
  - Model size (w8a8): 6.23 MB
  - Model size (w8a16): 6.65 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| PPE-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 4.166 ms | 0 - 22 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.tflite) |
| PPE-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 4.042 ms | 1 - 20 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.dlc) |
| PPE-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.407 ms | 0 - 37 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.tflite) |
| PPE-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.528 ms | 1 - 31 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.dlc) |
| PPE-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.668 ms | 0 - 135 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.tflite) |
| PPE-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.63 ms | 1 - 69 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.dlc) |
| PPE-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 0.956 ms | 0 - 62 MB | NPU | [PPE-Detection.onnx.zip](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.onnx.zip) |
| PPE-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.273 ms | 0 - 22 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.tflite) |
| PPE-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.227 ms | 1 - 20 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.dlc) |
| PPE-Detection | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 4.166 ms | 0 - 22 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.tflite) |
| PPE-Detection | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 4.042 ms | 1 - 20 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.dlc) |
| PPE-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.67 ms | 0 - 135 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.tflite) |
| PPE-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.627 ms | 1 - 67 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.dlc) |
| PPE-Detection | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.812 ms | 0 - 26 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.tflite) |
| PPE-Detection | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.804 ms | 0 - 23 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.dlc) |
| PPE-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.671 ms | 0 - 136 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.tflite) |
| PPE-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.631 ms | 0 - 67 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.dlc) |
| PPE-Detection | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.273 ms | 0 - 22 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.tflite) |
| PPE-Detection | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.227 ms | 1 - 20 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.dlc) |
| PPE-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.666 ms | 0 - 137 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.tflite) |
| PPE-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 0.633 ms | 1 - 73 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.dlc) |
| PPE-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 0.938 ms | 0 - 58 MB | NPU | [PPE-Detection.onnx.zip](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.onnx.zip) |
| PPE-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.486 ms | 0 - 41 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.tflite) |
| PPE-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.476 ms | 0 - 32 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.dlc) |
| PPE-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.642 ms | 0 - 31 MB | NPU | [PPE-Detection.onnx.zip](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.onnx.zip) |
| PPE-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.482 ms | 0 - 27 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.tflite) |
| PPE-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.461 ms | 1 - 26 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.dlc) |
| PPE-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 0.641 ms | 1 - 23 MB | NPU | [PPE-Detection.onnx.zip](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.onnx.zip) |
| PPE-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.783 ms | 54 - 54 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.dlc) |
| PPE-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.92 ms | 12 - 12 MB | NPU | [PPE-Detection.onnx.zip](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection.onnx.zip) |
| PPE-Detection | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1.448 ms | 0 - 19 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a16.dlc) |
| PPE-Detection | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 0.708 ms | 0 - 41 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a16.dlc) |
| PPE-Detection | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.471 ms | 0 - 47 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a16.dlc) |
| PPE-Detection | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 0.674 ms | 0 - 20 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a16.dlc) |
| PPE-Detection | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 2.793 ms | 0 - 30 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a16.dlc) |
| PPE-Detection | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1.448 ms | 0 - 19 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a16.dlc) |
| PPE-Detection | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.475 ms | 0 - 48 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a16.dlc) |
| PPE-Detection | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.094 ms | 0 - 26 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a16.dlc) |
| PPE-Detection | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.477 ms | 0 - 49 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a16.dlc) |
| PPE-Detection | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 0.674 ms | 0 - 20 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a16.dlc) |
| PPE-Detection | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 0.472 ms | 0 - 48 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a16.dlc) |
| PPE-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.322 ms | 0 - 39 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a16.dlc) |
| PPE-Detection | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.317 ms | 0 - 25 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a16.dlc) |
| PPE-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.587 ms | 52 - 52 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a16.dlc) |
| PPE-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 0.87 ms | 0 - 19 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.tflite) |
| PPE-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 0.831 ms | 0 - 20 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.dlc) |
| PPE-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.368 ms | 0 - 39 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.tflite) |
| PPE-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 0.493 ms | 0 - 34 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.dlc) |
| PPE-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.241 ms | 0 - 50 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.tflite) |
| PPE-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.232 ms | 0 - 50 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.dlc) |
| PPE-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.448 ms | 0 - 18 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.tflite) |
| PPE-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 0.423 ms | 0 - 20 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.dlc) |
| PPE-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 1.395 ms | 0 - 30 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.tflite) |
| PPE-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 1.741 ms | 0 - 30 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.dlc) |
| PPE-Detection | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 5.318 ms | 0 - 3 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.tflite) |
| PPE-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 0.87 ms | 0 - 19 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.tflite) |
| PPE-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 0.831 ms | 0 - 20 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.dlc) |
| PPE-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.248 ms | 0 - 52 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.tflite) |
| PPE-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.246 ms | 0 - 49 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.dlc) |
| PPE-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 0.695 ms | 0 - 26 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.tflite) |
| PPE-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 0.687 ms | 0 - 27 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.dlc) |
| PPE-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.25 ms | 0 - 51 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.tflite) |
| PPE-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.24 ms | 0 - 50 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.dlc) |
| PPE-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 0.448 ms | 0 - 18 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.tflite) |
| PPE-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 0.423 ms | 0 - 20 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.dlc) |
| PPE-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.246 ms | 0 - 51 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.tflite) |
| PPE-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 0.243 ms | 0 - 49 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.dlc) |
| PPE-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.186 ms | 0 - 43 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.tflite) |
| PPE-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.177 ms | 0 - 39 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.dlc) |
| PPE-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.178 ms | 0 - 22 MB | NPU | [PPE-Detection.tflite](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.tflite) |
| PPE-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.166 ms | 0 - 26 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.dlc) |
| PPE-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.34 ms | 54 - 54 MB | NPU | [PPE-Detection.dlc](https://huggingface.co/qualcomm/PPE-Detection/blob/main/PPE-Detection_w8a8.dlc) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.gear_guard_net.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.gear_guard_net.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.gear_guard_net.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/gear_guard_net/qai_hub_models/models/PPE-Detection/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.gear_guard_net import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.gear_guard_net.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.gear_guard_net.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on PPE-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/gear_guard_net).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of PPE-Detection can be found
  [here](https://github.com/quic/ai-hub-models/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)




## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).