File size: 18,542 Bytes
c87bc33
 
6241d2f
c87bc33
 
 
bf7e2ce
c87bc33
 
 
3504a0e
c87bc33
 
 
 
e2c2af8
c87bc33
 
b62bba4
e2c2af8
 
c87bc33
 
 
 
 
478a71b
c87bc33
 
6241d2f
c87bc33
 
 
 
6241d2f
 
c87bc33
6241d2f
3ec0f00
73888d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c87bc33
47f7376
 
c87bc33
 
 
 
a012d6f
c87bc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478a71b
47f7376
 
c87bc33
 
47f7376
c87bc33
 
 
 
 
 
 
 
 
 
 
 
c6a9dfd
c87bc33
 
c6a9dfd
c87bc33
 
a012d6f
c87bc33
c6a9dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c87bc33
 
 
 
 
 
 
 
 
 
 
 
b36c8a0
 
 
fab8b39
c87bc33
 
 
 
 
 
 
 
 
b36c8a0
 
 
 
fab8b39
c87bc33
 
 
 
 
 
3504a0e
c87bc33
 
47f7376
c87bc33
 
 
 
 
fdfc73d
c87bc33
 
 
 
 
fdfc73d
c87bc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec0f00
c87bc33
a012d6f
 
3ec0f00
 
 
c87bc33
 
 
 
 
3ec0f00
 
c87bc33
85ced27
c87bc33
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
---
library_name: pytorch
license: other
tags:
- backbone
- android
pipeline_tag: image-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/resnet18/web-assets/model_demo.png)

# ResNet18: Optimized for Mobile Deployment
## Imagenet classifier and general purpose backbone


ResNet18 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of ResNet18 found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py).


This repository provides scripts to run ResNet18 on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/resnet18).



### Model Details

- **Model Type:** Model_use_case.image_classification
- **Model Stats:**
  - Model checkpoint: Imagenet
  - Input resolution: 224x224
  - Number of parameters: 11.7M
  - Model size (float): 44.6 MB
  - Model size (w8a8): 11.3 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| ResNet18 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 6.098 ms | 0 - 20 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
| ResNet18 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 5.88 ms | 0 - 17 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.dlc) |
| ResNet18 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.971 ms | 0 - 53 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
| ResNet18 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.339 ms | 1 - 29 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.dlc) |
| ResNet18 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.362 ms | 0 - 222 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
| ResNet18 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.284 ms | 0 - 58 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.dlc) |
| ResNet18 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.123 ms | 0 - 20 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
| ResNet18 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.918 ms | 1 - 18 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.dlc) |
| ResNet18 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 6.098 ms | 0 - 20 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
| ResNet18 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 5.88 ms | 0 - 17 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.dlc) |
| ResNet18 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.36 ms | 0 - 222 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
| ResNet18 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.264 ms | 0 - 83 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.dlc) |
| ResNet18 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.506 ms | 0 - 24 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
| ResNet18 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.324 ms | 1 - 22 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.dlc) |
| ResNet18 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.358 ms | 0 - 220 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
| ResNet18 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.266 ms | 0 - 83 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.dlc) |
| ResNet18 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.123 ms | 0 - 20 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
| ResNet18 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.918 ms | 1 - 18 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.dlc) |
| ResNet18 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 1.356 ms | 0 - 226 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
| ResNet18 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.264 ms | 0 - 60 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.dlc) |
| ResNet18 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 1.149 ms | 0 - 64 MB | NPU | [ResNet18.onnx.zip](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.onnx.zip) |
| ResNet18 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.947 ms | 0 - 50 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
| ResNet18 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.877 ms | 1 - 25 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.dlc) |
| ResNet18 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.84 ms | 0 - 24 MB | NPU | [ResNet18.onnx.zip](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.onnx.zip) |
| ResNet18 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.872 ms | 0 - 27 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.tflite) |
| ResNet18 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.826 ms | 1 - 23 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.dlc) |
| ResNet18 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 0.849 ms | 1 - 18 MB | NPU | [ResNet18.onnx.zip](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.onnx.zip) |
| ResNet18 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.398 ms | 88 - 88 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.dlc) |
| ResNet18 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.298 ms | 22 - 22 MB | NPU | [ResNet18.onnx.zip](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18.onnx.zip) |
| ResNet18 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 1.034 ms | 0 - 18 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.tflite) |
| ResNet18 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1.281 ms | 0 - 18 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.dlc) |
| ResNet18 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.471 ms | 0 - 43 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.tflite) |
| ResNet18 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 0.743 ms | 0 - 44 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.dlc) |
| ResNet18 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.401 ms | 0 - 89 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.tflite) |
| ResNet18 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.548 ms | 0 - 89 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.dlc) |
| ResNet18 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.57 ms | 0 - 18 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.tflite) |
| ResNet18 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 0.699 ms | 0 - 18 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.dlc) |
| ResNet18 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 1.392 ms | 0 - 33 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.tflite) |
| ResNet18 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 2.011 ms | 0 - 32 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.dlc) |
| ResNet18 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 7.426 ms | 0 - 3 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.tflite) |
| ResNet18 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 1.034 ms | 0 - 18 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.tflite) |
| ResNet18 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1.281 ms | 0 - 18 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.dlc) |
| ResNet18 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.404 ms | 0 - 89 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.tflite) |
| ResNet18 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.537 ms | 0 - 87 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.dlc) |
| ResNet18 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 0.745 ms | 0 - 23 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.tflite) |
| ResNet18 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 0.908 ms | 0 - 24 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.dlc) |
| ResNet18 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.402 ms | 0 - 87 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.tflite) |
| ResNet18 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.551 ms | 0 - 88 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.dlc) |
| ResNet18 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 0.57 ms | 0 - 18 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.tflite) |
| ResNet18 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 0.699 ms | 0 - 18 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.dlc) |
| ResNet18 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 0.548 ms | 0 - 87 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.dlc) |
| ResNet18 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 28.145 ms | 35 - 123 MB | NPU | [ResNet18.onnx.zip](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.onnx.zip) |
| ResNet18 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.312 ms | 0 - 42 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.tflite) |
| ResNet18 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.414 ms | 0 - 41 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.dlc) |
| ResNet18 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 21.54 ms | 28 - 531 MB | NPU | [ResNet18.onnx.zip](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.onnx.zip) |
| ResNet18 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.307 ms | 0 - 22 MB | NPU | [ResNet18.tflite](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.tflite) |
| ResNet18 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.326 ms | 0 - 24 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.dlc) |
| ResNet18 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 21.18 ms | 15 - 545 MB | NPU | [ResNet18.onnx.zip](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.onnx.zip) |
| ResNet18 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.614 ms | 71 - 71 MB | NPU | [ResNet18.dlc](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.dlc) |
| ResNet18 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 27.589 ms | 58 - 58 MB | NPU | [ResNet18.onnx.zip](https://huggingface.co/qualcomm/ResNet18/blob/main/ResNet18_w8a8.onnx.zip) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.resnet18.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.resnet18.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.resnet18.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/resnet18/qai_hub_models/models/ResNet18/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.resnet18 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.resnet18.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.resnet18.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on ResNet18's performance across various devices [here](https://aihub.qualcomm.com/models/resnet18).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of ResNet18 can be found
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).