File size: 14,489 Bytes
357cf26
 
4d24d59
357cf26
 
 
273cff7
357cf26
 
 
c086f59
357cf26
 
 
 
cf14a3e
357cf26
 
750dda7
cf14a3e
 
357cf26
 
 
 
 
29b8e9a
357cf26
 
4d24d59
357cf26
 
 
 
4d24d59
5e0a572
357cf26
4d24d59
cbdce00
1f2065e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357cf26
bd5df04
 
357cf26
 
 
 
4a51011
357cf26
 
 
 
 
ad39458
357cf26
ad39458
357cf26
 
 
 
 
 
 
ad39458
357cf26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29b8e9a
bd5df04
 
357cf26
 
bd5df04
357cf26
 
 
 
 
 
 
 
 
 
 
 
ef5f828
357cf26
 
ef5f828
357cf26
 
3e85e30
357cf26
ef5f828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357cf26
 
 
 
 
 
 
 
 
 
 
 
08bae1d
 
 
9b1068c
357cf26
 
 
 
 
 
 
 
 
08bae1d
 
 
 
9b1068c
357cf26
 
 
 
 
 
ad39458
357cf26
 
bd5df04
357cf26
 
 
 
 
c00f6d5
357cf26
 
 
 
 
c00f6d5
357cf26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbdce00
357cf26
4a51011
 
cbdce00
 
 
357cf26
 
 
 
 
cbdce00
 
357cf26
f8f3d1b
357cf26
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
---
library_name: pytorch
license: other
tags:
- backbone
- android
pipeline_tag: image-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/swin_small/web-assets/model_demo.png)

# Swin-Small: Optimized for Mobile Deployment
## Imagenet classifier and general purpose backbone


SwinSmall is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of Swin-Small found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py).


This repository provides scripts to run Swin-Small on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/swin_small).



### Model Details

- **Model Type:** Model_use_case.image_classification
- **Model Stats:**
  - Model checkpoint: Imagenet
  - Input resolution: 224x224
  - Number of parameters: 50.4M
  - Model size (float): 193 MB
  - Model size (w8a16): 52.5 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Swin-Small | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 44.28 ms | 0 - 269 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
| Swin-Small | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 38.441 ms | 1 - 515 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) |
| Swin-Small | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 23.619 ms | 0 - 262 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
| Swin-Small | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 24.571 ms | 1 - 236 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) |
| Swin-Small | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 18.404 ms | 0 - 30 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
| Swin-Small | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 15.634 ms | 0 - 63 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) |
| Swin-Small | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 15.658 ms | 0 - 52 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.onnx.zip) |
| Swin-Small | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 93.979 ms | 0 - 268 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
| Swin-Small | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 17.503 ms | 1 - 538 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) |
| Swin-Small | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 44.28 ms | 0 - 269 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
| Swin-Small | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 38.441 ms | 1 - 515 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) |
| Swin-Small | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 18.604 ms | 0 - 36 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
| Swin-Small | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 15.792 ms | 0 - 62 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) |
| Swin-Small | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 26.465 ms | 0 - 260 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
| Swin-Small | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 23.508 ms | 1 - 513 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) |
| Swin-Small | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 18.337 ms | 0 - 37 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
| Swin-Small | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 15.604 ms | 0 - 68 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) |
| Swin-Small | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 93.979 ms | 0 - 268 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
| Swin-Small | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 17.503 ms | 1 - 538 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) |
| Swin-Small | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 12.547 ms | 0 - 271 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
| Swin-Small | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 10.205 ms | 1 - 773 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) |
| Swin-Small | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 10.084 ms | 1 - 732 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.onnx.zip) |
| Swin-Small | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 10.135 ms | 0 - 264 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
| Swin-Small | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 7.895 ms | 1 - 532 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) |
| Swin-Small | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 7.736 ms | 1 - 530 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.onnx.zip) |
| Swin-Small | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 8.339 ms | 0 - 262 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
| Swin-Small | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 6.558 ms | 1 - 513 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) |
| Swin-Small | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 6.501 ms | 1 - 511 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.onnx.zip) |
| Swin-Small | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 16.461 ms | 578 - 578 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) |
| Swin-Small | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 16.006 ms | 100 - 100 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.onnx.zip) |
| Swin-Small | w8a16 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | ONNX | 739.671 ms | 100 - 118 MB | CPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.onnx.zip) |
| Swin-Small | w8a16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 331.0 ms | 101 - 110 MB | CPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.onnx.zip) |
| Swin-Small | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 197.042 ms | 43 - 106 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.onnx.zip) |
| Swin-Small | w8a16 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | ONNX | 356.586 ms | 73 - 95 MB | CPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.onnx.zip) |
| Swin-Small | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 131.06 ms | 41 - 107 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.onnx.zip) |
| Swin-Small | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 114.943 ms | 65 - 65 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.onnx.zip) |




## Installation


Install the package via pip:
```bash
pip install qai-hub-models
```


## Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub Workbench](https://workbench.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://workbench.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.swin_small.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.swin_small.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.swin_small.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/swin_small/qai_hub_models/models/Swin-Small/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.swin_small import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub Workbench. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.swin_small.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.swin_small.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Swin-Small's performance across various devices [here](https://aihub.qualcomm.com/models/swin_small).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Swin-Small can be found
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).