File size: 16,530 Bytes
5d3e655
 
410af17
5d3e655
 
 
e58469f
5d3e655
 
 
 
 
 
 
 
8c74224
5d3e655
 
c1a7708
8c74224
 
f98dce0
 
 
 
 
5d3e655
 
 
410af17
5d3e655
 
 
7f99bf1
 
410af17
7f99bf1
5d3e655
410af17
5d3e655
0a718e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f98dce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d3e655
f98dce0
 
5d3e655
f98dce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d3e655
 
 
b57775c
 
5d3e655
 
 
 
 
 
 
 
 
 
 
f98dce0
5d3e655
 
f98dce0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
---
library_name: pytorch
license: other
tags:
- real_time
- android
pipeline_tag: object-detection

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov11_det/web-assets/model_demo.png)

# YOLOv11-Detection: Optimized for Mobile Deployment
## Real-time object detection optimized for mobile and edge by Ultralytics


Ultralytics YOLOv11 is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of YOLOv11-Detection found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect).


This repository provides scripts to run YOLOv11-Detection on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/yolov11_det).

**WARNING**: The model assets are not readily available for download due to licensing restrictions.

### Model Details

- **Model Type:** Model_use_case.object_detection
- **Model Stats:**
  - Model checkpoint: YOLO11-N
  - Input resolution: 640x640
  - Number of parameters: 2.64M
  - Model size (float): 10.1 MB
  - Model size (w8a8): 2.83 MB
  - Model size (w8a16): 3.30 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| YOLOv11-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 13.544 ms | 0 - 65 MB | NPU | -- |
| YOLOv11-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 12.39 ms | 0 - 94 MB | NPU | -- |
| YOLOv11-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 7.285 ms | 0 - 40 MB | NPU | -- |
| YOLOv11-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 8.65 ms | 5 - 44 MB | NPU | -- |
| YOLOv11-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 4.286 ms | 0 - 22 MB | NPU | -- |
| YOLOv11-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.819 ms | 0 - 89 MB | NPU | -- |
| YOLOv11-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 5.576 ms | 0 - 65 MB | NPU | -- |
| YOLOv11-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 5.217 ms | 0 - 118 MB | NPU | -- |
| YOLOv11-Detection | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 13.544 ms | 0 - 65 MB | NPU | -- |
| YOLOv11-Detection | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 12.39 ms | 0 - 94 MB | NPU | -- |
| YOLOv11-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 4.304 ms | 0 - 22 MB | NPU | -- |
| YOLOv11-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.839 ms | 0 - 99 MB | NPU | -- |
| YOLOv11-Detection | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 8.427 ms | 0 - 33 MB | NPU | -- |
| YOLOv11-Detection | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 8.062 ms | 1 - 36 MB | NPU | -- |
| YOLOv11-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 4.305 ms | 0 - 22 MB | NPU | -- |
| YOLOv11-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.844 ms | 0 - 88 MB | NPU | -- |
| YOLOv11-Detection | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 5.576 ms | 0 - 65 MB | NPU | -- |
| YOLOv11-Detection | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 5.217 ms | 0 - 118 MB | NPU | -- |
| YOLOv11-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 4.302 ms | 0 - 23 MB | NPU | -- |
| YOLOv11-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 3.838 ms | 0 - 91 MB | NPU | -- |
| YOLOv11-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 5.804 ms | 0 - 99 MB | NPU | -- |
| YOLOv11-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 3.133 ms | 0 - 77 MB | NPU | -- |
| YOLOv11-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.749 ms | 5 - 228 MB | NPU | -- |
| YOLOv11-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 3.956 ms | 1 - 161 MB | NPU | -- |
| YOLOv11-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 3.087 ms | 0 - 70 MB | NPU | -- |
| YOLOv11-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 2.573 ms | 5 - 117 MB | NPU | -- |
| YOLOv11-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.774 ms | 3 - 92 MB | NPU | -- |
| YOLOv11-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.298 ms | 154 - 154 MB | NPU | -- |
| YOLOv11-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.269 ms | 5 - 5 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 7.133 ms | 1 - 30 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 4.422 ms | 2 - 43 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.78 ms | 2 - 14 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.389 ms | 1 - 30 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 12.917 ms | 2 - 39 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 7.133 ms | 1 - 30 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.78 ms | 2 - 14 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 5.011 ms | 2 - 39 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.78 ms | 2 - 14 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.389 ms | 1 - 30 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 3.784 ms | 2 - 14 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 73.103 ms | 3 - 196 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.529 ms | 2 - 40 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 57.142 ms | 13 - 1480 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 2.208 ms | 2 - 43 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 54.92 ms | 2 - 1237 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.186 ms | 0 - 0 MB | NPU | -- |
| YOLOv11-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 81.59 ms | 29 - 29 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3.678 ms | 0 - 26 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 3.52 ms | 1 - 26 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2.026 ms | 0 - 38 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.938 ms | 1 - 38 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.83 ms | 0 - 11 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.711 ms | 1 - 12 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.282 ms | 0 - 26 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.151 ms | 1 - 27 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 4.135 ms | 0 - 34 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 5.328 ms | 1 - 36 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 55.478 ms | 1 - 8 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3.678 ms | 0 - 26 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 3.52 ms | 1 - 26 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.825 ms | 0 - 11 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.722 ms | 1 - 11 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.645 ms | 0 - 34 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.511 ms | 0 - 33 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.83 ms | 0 - 12 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.721 ms | 2 - 13 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.282 ms | 0 - 26 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.151 ms | 1 - 27 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 1.834 ms | 0 - 12 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.724 ms | 1 - 13 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 7.592 ms | 0 - 31 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.203 ms | 0 - 36 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.18 ms | 1 - 37 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 5.291 ms | 1 - 95 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.113 ms | 0 - 30 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.04 ms | 1 - 34 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 5.156 ms | 0 - 95 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.973 ms | 0 - 0 MB | NPU | -- |
| YOLOv11-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.648 ms | 2 - 2 MB | NPU | -- |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[yolov11-det]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.yolov11_det.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.yolov11_det.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.yolov11_det.export
```



## How does this work?

This [export script](https://aihub.qualcomm.com/models/yolov11_det/qai_hub_models/models/YOLOv11-Detection/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.yolov11_det import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.yolov11_det.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.yolov11_det.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on YOLOv11-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/yolov11_det).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of YOLOv11-Detection can be found
  [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)



## References
* [Ultralytics YOLOv11 Docs: Object Detection](https://docs.ultralytics.com/tasks/detect/)
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).