File size: 30,776 Bytes
58523d7 f2c1f2d b35336d 88929e3 b35336d 77ba3f6 bd02ca3 7062fcc bd02ca3 83d7796 b35336d 58523d7 e3ec44f 58523d7 b35336d 6593a85 b35336d d057364 eed813e d057364 5e98a37 df33c08 5e98a37 d057364 5e98a37 df33c08 d057364 c8b2b1d 5e98a37 b35336d df33c08 d057364 6593a85 99675da 6593a85 dc07e50 5ceac77 40c4e77 5ceac77 6593a85 b35336d d036e93 ec26a3c e3ec44f b35336d d036e93 b35336d d036e93 b35336d d036e93 b35336d d036e93 b35336d d036e93 b35336d 534f0c2 b3129fe 534f0c2 b35336d dc2921b 8b0ac60 d8cf79b 8b0ac60 b35336d 71d05bb b35336d 52627de e3ec44f 52627de b35336d 04a90cf e3ec44f b35336d 8b0ac60 b35336d 8b0ac60 b35336d 8b0ac60 b35336d 8b0ac60 58523d7 386b2fe 8b0ac60 58523d7 8ecf603 4cddd05 8b0ac60 4cddd05 b35336d 8b0ac60 b35336d 8b0ac60 b35336d 8b0ac60 b35336d 8b0ac60 386b2fe eaa63ed 75f40a9 71d05bb 58523d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
---
datasets:
- quandao92/ad-clip-dataset
metrics:
- f1
base_model:
- openai/clip-vit-base-patch32
---
<div style='text-align: center; font-size: 28px; font-weight: bold'>CLIP κΈ°λ° μ ν κ²°ν¨ νμ§ λͺ¨λΈ μΉ΄λ</div>
## λͺ¨λΈ μΈλΆμ¬ν
### λͺ¨λΈ μ€λͺ
AnomalyCLIPμ νΉμ κ°μ²΄μ μμ‘΄νμ§ μλ ν
μ€νΈ ν둬ννΈλ₯Ό νμ΅νμ¬ μ΄λ―Έμ§ λ΄μ μ κ²½ κ°μ²΄μ μκ΄μμ΄ μΌλ°μ μΈ μ μ λ° λΉμ μ ν¨ν΄μ ν¬μ°©νλ κ²μ λͺ©νλ‘ ν©λλ€.
μ΄ λͺ¨λΈμ CLIP κΈ°λ° μ΄μ νμ§ κΈ°λ²μ νμ©νμ¬ μ ν κ²°ν¨μ νμ§ν©λλ€.
μ¬μ νμ΅λ CLIP λͺ¨λΈμ νμΈνλ(Fine-tuning)νμ¬ μ ν μ΄λ―Έμ§μμ κ²°ν¨μ μλ³νλ©°, μ΄λ₯Ό ν΅ν΄ μμ° λΌμΈμ νμ§ κ΄λ¦¬ λ° κ²°ν¨ νμ§ μμ
μ μλνν μ μμ΅λλ€.
- **Developed by:** μ€μλ―Ό
- **Funded by:** SOLUWINS Co., Ltd. (μ루μμ€)
- **Referenced by:** zhou2023 anomalyclip [[github](https://github.com/zqhang/AnomalyCLIP.git)]
- **Model type:** CLIP (Contrastive Language-Image Pretraining) - Domain-Agnostic Prompt Learning Model
- **Language(s):** Python
- **License:** Apache 2.0, MIT, OpenAI
### κΈ°μ μ μ νμ¬ν
- λͺ¨λΈμ κ²°ν¨ νμ§λ₯Ό μν μΆ©λΆνκ³ λ€μν νλ ¨ λ°μ΄ν°λ₯Ό νμλ‘ ν©λλ€. νλ ¨ λ°μ΄ν°μ
μ΄ λΆμ‘±νκ±°λ λΆκ· νν κ²½μ°, λͺ¨λΈμ μ±λ₯μ΄ μ νλ μ μμ΅λλ€.
- μ€μκ° κ²°ν¨ κ°μ§ μ±λ₯μ νλμ¨μ΄ μ¬μμ λ°λΌ λ¬λΌμ§ μ μμΌλ©°, λμ ν΄μλμμ κ²°ν¨μ νμ§νλ μ νλκ° λ¨μ΄μ§ μ μμ΅λλ€.
- κ²°ν¨μ΄ λ―ΈμΈνκ±°λ μ ν κ° μ μ¬μ±μ΄ λ§€μ° λμ κ²½μ°, λͺ¨λΈμ΄ κ²°ν¨μ μ ννκ² νμ§νμ§ λͺ»ν μ μμ΅λλ€.
## νμ΅ μΈλΆμ¬ν
### Hardware
- **CPU:** Intel Core i9-13900K (24 Cores, 32 Threads)
- **RAM:** 64GB DDR5
- **GPU:** NVIDIA RTX 4090Ti 24GB
- **Storage:** 1TB NVMe SSD + 2TB HDD
### Software
- **OS:** Windows 11 64 bit/ Ubuntu 20.04LTS
- **Python:** 3.8 (anaconda)
- **PyTorch:** 1.9.0
- **OpenCV:** 4.5.3
- **Cuda Toolkit:** 11.8
- **CudDNN:** 9.3.0.75 for cuda11
### λ°μ΄ν°μ
μ 보
μ΄ λͺ¨λΈμ μ νμ μ μ μ΄λ―Έμ§μ κ²°ν¨ μ΄λ―Έμ§λ₯Ό μ¬μ©νμ¬ νλ ¨λ©λλ€.
μ΄ λ°μ΄ν°λ μ νμ μ΄λ―Έμ§, κ²°ν¨ μμμ λν ground truth μ 보, κ·Έλ¦¬κ³ κΈ°ν κ΄λ ¨ νΉμ±μ ν¬ν¨νκ³ μμ΅λλ€.
μ΄λ―Έμ§λ CLIP λͺ¨λΈμ μ
λ ₯ νμμ μ ν©νλλ‘ μ μ²λ¦¬λλ©°, κ²°ν¨ μμμ νκ°λ₯Ό μν΄ ground truth λ§νΉμ΄ ν¬ν¨λ©λλ€.
- **λ°μ΄ν° μμ€:** https://huggingface.co/datasets/quandao92/ad-clip-dataset
- **λ°μ΄ν° μμ§ μ₯λΉ:**
- μμ§ H/W: jetson orin nano 8GB
- μΉ΄λ©λΌ: BFS-U3-89S6C Color Camera
- λ μ¦: 8mm Fiexd Focal Length Lens
- μ‘°λͺ
: LIDLA-120070
- λ°μ΄ν° νμ: .bpm, .jpg
- **λ°μ΄ν° λ²μ κ΄λ¦¬:**
- **1μ°¨ : 20240910_V0_κ°μ΄ νκ²½ λ°μ΄ν° μμ§**
λ°μ΄ν° λ²μ λ° μ¬μ© μ΄λ ₯
- V01: μ μ²λ¦¬ μ λ°μ΄ν° μλ³Έ -> λ°μ΄ν° μμ§ μλ³Έ: 7ea
- V02: λ°μ΄ν° λΆλ₯ -> μ μ/λΆλ λΆλ₯: 4ea/3ea
- V03: λ°μ΄ν° λΆλ₯, λ°μ΄ν° νμ -> μ΄λ―Έμ§ μ¦κ°_45/90/135λλ‘ νμ _28ea
<div style="text-align: center;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/6kvzgbH81jJrHJECaEspY.png" height="500" width="100%">
<p>Ground Truth Marking</p>
</div>
<div style="display: flex; justify-content: space-between;">
<div style="text-align: center; margin-right: 5px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/_fkcI52_BTcqvQyrJ4EXl.png" height="80%" width="90%" style="margin-right:5px;">
<p>PCA λΆν¬ μκ°ν</p>
</div>
<div style="text-align: center; margin-right: 5px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/biaWPJtbm6iwNf7ZqnW5O.png" height="80%" width="90%" style="margin-right:5px;">
<p>Isolation Forestλ‘ μ΄μκ° μλ³ κ²°κ³Ό</p>
</div>
</div>
- **2μ°¨ : 20240920_V1_νμ°μ§ λ΄ μ΄λ―Έμ§ μμ§**
λ°μ΄ν° λ²μ λ° μ¬μ© μ΄λ ₯
- V01: μ μ²λ¦¬ μ λ°μ΄ν° μλ³Έ -> λ°μ΄ν° μμ§ μλ³Έ: 16ea
- V02: λ°μ΄ν° λΆλ₯ -> μ μ/λΆλ λΆλ₯: 14ea/2ea
- V03: λ°μ΄ν° λΆλ₯, λ°μ΄ν° νμ -> μ΄λ―Έμ§ μ¦κ°__64ea
<div style="text-align: center;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/YsP7UwejFabUFp2Im0xWj.png" height="500" width="100%">
<p>Ground Truth Marking</p>
</div>
<div style="display: flex; justify-content: space-between;">
<div style="text-align: center; margin-right: 5px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/CNFdse5mHQY1KkMb5BYpb.png" height="80%" width="90%" style="margin-right:5px;">
<p>PCA λΆν¬ μκ°ν</p>
</div>
<div style="text-align: center; margin-right: 5px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/nRO00DJFT0-B1EJYf8lzK.png" height="80%" width="90%" style="margin-right:5px;">
<p>Isolation Forestλ‘ μ΄μκ° μλ³ κ²°κ³Ό</p>
</div>
</div>
- **3μ°¨ : 20241002_V2_μ€λΉ λ΄ λ°μ΄ν° μμ§**
λ°μ΄ν° λ²μ λ° μ¬μ© μ΄λ ₯
- V01: μ μ²λ¦¬ μ λ°μ΄ν° μλ³Έ -> μ΄λ―Έμ§ μμ§_49κ°
- V02: λ°μ΄ν° λΆλ₯ -> μ μ/λΆλ λΆλ₯ μν_error/normal
- V03: λ°μ΄ν° λΆλ₯, λ°μ΄ν° νμ -> μ΄λ―Έμ§ μ¦κ° μν_μ΄λ―Έμ§ νμ μ ν΅ν΄ μ΄λ―Έμ§ κ°μ 102κ°
<div style="text-align: center;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/MFyVWaqr4GDNs8W2mWzGZ.png" height="500" width="100%">
<p>Ground Truth Marking</p>
</div>
<div style="display: flex; justify-content: space-between;">
<div style="text-align: center; margin-right: 5px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/Kc3EMbY05frUFQh5HbVHn.png" height="80%" width="90%" style="margin-right:5px;">
<p>PCA λΆν¬ μκ°ν</p>
</div>
<div style="text-align: center; margin-right: 5px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/SP4R5LjGo2M1Zvby1Bar_.png" height="80%" width="90%" style="margin-right:5px;">
<p>Isolation Forestλ‘ μ΄μκ° μλ³ κ²°κ³Ό</p>
</div>
</div>
- **Data Configuration:**
- **μ΄λ―Έμ§ ν¬κΈ° μ‘°μ λ° μ κ·ν:**
- μ΄λ―Έμ§λ μΌμ ν ν¬κΈ°(μ: 518x518)λ‘ λ¦¬μ¬μ΄μ¦λλ©°, CLIP λͺ¨λΈμ μ
λ ₯μΌλ‘ μ ν©νκ² μ²λ¦¬λ©λλ€.
- μ κ·νλ₯Ό ν΅ν΄ ν½μ
κ°μ [0, 1] λ²μλ‘ λ³νν©λλ€.
- **Ground Truth λ§νΉ:**
- κ²°ν¨μ΄ μλ μ΄λ―Έμ§μ λν΄ κ²°ν¨ μμμ bounding box νμ λλ binary maskλ‘ νμν©λλ€.
- λ§νΉλ λ°μ΄ν°λ₯Ό JSON λλ CSV νμμΌλ‘ μ μ₯νμ¬ λͺ¨λΈ νκ° μ μ¬μ©ν©λλ€.
<div style="text-align: center;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/k8GQgaTK7JfQExNpCYpzz.png" height="500" width="100%" style="margin-right:5px;">
<p>Ground Truth Marking</p>
</div>
- **λ°μ΄ν° λΆλ₯:**
- Normal: κ²°ν¨μ΄ μλ μ μ μ νμ μ΄λ―Έμ§.
- Error: κ²°ν¨μ΄ μλ μ νμ μ΄λ―Έμ§. κ²°ν¨ μμΉμ κ΄λ ¨ μ λ³΄κ° ν¬ν¨λ©λλ€.
<div style="display: flex;justify-content: space-between;">
<div style="text-align: center;margin-right: 5px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/5pGwZ-sptjWjf7WpHifyJ.jpeg" height="400" width="450"">
</div>
<div style="text-align: center;justify-content: space-between; margin-right: 5px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/3iihck7VfkXKw9VcIl06x.jpeg" height="400" width="450"">
</div>
<div style="text-align: center;justify-content: space-between;margin-right: 5px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/tjsmiXq9pp0K6KSuS1iOS.jpeg" height="400" width="450"">
</div>
</div>
<p style="text-align: center;">Normal Product Images</p>
<div style="display: flex;justify-content: space-between;">
<div style="text-align: center;margin-right: 5px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/Qv01zDzEM5u8cQYdALrSU.jpeg" height="400" width="450"">
</div>
<div style="text-align: center;justify-content: space-between; margin-right: 5px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/B5q_FKiTVXkuElTSlUc4s.jpeg" height="400" width="450"">
</div>
<div style="text-align: center;justify-content: space-between;margin-right: 5px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/3pro8oEqMTiEwiwFKcACn.jpeg" height="400" width="450"">
</div>
</div>
<p style="text-align: center;">Error Product Images</p>
### λ°μ΄ν° λΌλ²¨λ§ κ°μ΄λ
λ³Έ λ°μ΄ν° λΌλ²¨λ§ κ°μ΄λλ AnomalyDetection κΈ°λ° λͺ¨λΈ νμ΅μ μν΄ μμ§λ λ°μ΄ν°λ₯Ό λΌλ²¨λ§νλ κΈ°μ€κ³Ό νλ‘μΈμ€λ₯Ό λͺ
νν μ μν©λλ€.
λ°μ΄ν°λ μ£Όλ‘ μ μ(normal) λ°μ΄ν°λ₯Ό μ€μ¬μΌλ‘ ꡬμ±λλ©°, μ΅μνμ λΉμ μ(anomaly) λ°μ΄ν°λ₯Ό ν¬ν¨ν©λλ€.
λ³Έ κ°μ΄λλ λ°μ΄ν°μ νμ§μ μ μ§νκ³ λͺ¨λΈ νμ΅ λ° ν
μ€νΈλ₯Ό μ΅μ ννλ λ° λͺ©νλ₯Ό λ‘λλ€.
- **λΌλ²¨λ§ λ²μ**
1. **μ μ(normal) λ°μ΄ν°**:
- μ 체 λ°μ΄ν°μ μ½ **95% μ΄μ**μ μ°¨μ§.
- λ€μν νκ²½ 쑰건μμ μμ§λ λ°μ΄ν°λ₯Ό ν¬ν¨ (μ‘°λͺ
, κ°λ, λ°°κ²½ λ±).
- μ μμ μΈ μνμ κΈμ νλ©΄, μ λ°ν ꡬ쑰, κ· μΌν κ΄νμ κ°μ§ λ°μ΄ν°.
2. **λΉμ μ(anomaly) λ°μ΄ν°**:
- μ 체 λ°μ΄ν°μ μ½ 5**% μ΄ν**λ‘ μ ν.
- κ²°ν¨ μ ν:
- **Scratch**: μ€ν¬λμΉ.
- **Contamination**: μΌλ£© λλ μ΄λ¬Όμ§.
- **Crack**: νλ©΄ κ· μ΄.
- **κ²°ν¨ μ΄λ―Έμ§ μμ**
- **λ°μ΄ν° λΌλ²¨λ§ κΈ°μ€**
-**1. νμΌ λ€μ΄λ° κ·μΉ**
- λ°μ΄ν° λ²μ λ³ νμΌλͺ
μ λ²μ λ³λ‘ μμ΄ν¨.
- κ° λ²μ μ λ°μ΄ν° κ΄λ¦¬ λ¬Έμ μ°Έκ³
- λ°μ΄ν° ν΄λλͺ
μ **`<μμ§λ
μμΌ>_<Vλ²μ >_<κ°λ¨ν μ€λͺ
>`** νμμΌλ‘ μμ±.
- μμ:20240910_V0_κ°μ΄ νκ²½ λ°μ΄ν° μμ§
- **2. λΌλ²¨ λ©νλ°μ΄ν°**
λΌλ²¨ λ©νλ°μ΄ν°λ csv νμμΌλ‘ μ μ₯νλ©°, κ° λ°μ΄ν°μ λΌλ²¨ λ° μ€λͺ
μ ν¬ν¨.
- **νμ νλ**:
- `image_id`: μ΄λ―Έμ§ νμΌλͺ
.
- `label`: μ μ(`normal`) λλ λΉμ μ(`anomaly`) μ¬λΆ.
- `description`: μμΈ μ€λͺ
(μ: κ²°ν¨ μ ν).
- **μμ:**
```ruby
{
"image_id": "normal_20241111_001.jpg",
"label": "normal",
"description": "λ§€λλ¬μ΄ νλ©΄μ κ°μ§ μ μμ μΈ κΈμ λΆν, κ΄νμ΄ κ· μΌν¨."
}
{
"image_id": "abnormal_20241111_002.jpg",
"label": "error",
"description": "νλ©΄μ μ ν μ€ν¬λμΉκ° λ°κ²¬λ¨."
}
```
# AD-CLIP Model Architecture
AD-CLIP λͺ¨λΈμ CLIP (ViT-B-32)μ λ°±λ³ΈμΌλ‘ μ¬μ©νμ¬ μ΄λ―Έμ§μμ νΉμ§μ μΆμΆνκ³ , λμ‘° νμ΅μ ν΅ν΄ μ΄μμ νμ§ν©λλ€.
μ΅μ’
μΆλ ₯μ μ΄λ―Έμ§κ° λΉμ μμΈμ§ μ μμΈμ§λ₯Ό νλ³νλ μ΄μ μ μμ κ° ν΄λμ€μ νλ₯ μ μ 곡ν©λλ€.
<div style="display: flex; justify-content: center; align-items: center; flex-direction: column;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/62sYcSncxxzqGjQAa0MgQ.png" height="500" width="70%">
<p>CLIP-based Anomaly Detection Model Architecture</p>
</div>
- **model:**
- μ
λ ₯ κ³μΈ΅ (Input Layer):
- μ
λ ₯ μ΄λ―Έμ§: λͺ¨λΈμ ν¬κΈ° [640, 640, 3]μ μ΄λ―Έμ§λ₯Ό μ
λ ₯λ°μ΅λλ€. μ¬κΈ°μ 640x640μ μ΄λ―Έμ§μ κ°λ‘μ μΈλ‘ ν¬κΈ°μ΄λ©°, 3μ RGB μμμ μ±λ μλ₯Ό λνλ
λλ€.
- κΈ°λ₯: μ΄ κ³μΈ΅μ μ
λ ₯λ μ΄λ―Έμ§λ₯Ό μ²λ¦¬νκ³ λͺ¨λΈμ λλ¨Έμ§ λΆλΆμ λ§λ νμμΌλ‘ λ°μ΄ν°λ₯Ό μ€λΉνλ μν μ ν©λλ€.
- backbone:
- CLIP (ViT-B-32): λͺ¨λΈμ CLIPμ Vision Transformer (ViT-B-32) μν€ν
μ²λ₯Ό μ¬μ©νμ¬ μ΄λ―Έμ§μμ νΉμ§μ μΆμΆν©λλ€. ViT-B-32λ μ΄λ―Έμ§λ₯Ό μ΄ν΄νλ λ° νμν κ³ κΈ νΉμ±μ μΆμΆν μ μλ λ₯λ ₯μ κ°μ§κ³ μμ΅λλ€.
- νν°: νν° ν¬κΈ° [32, 64, 128, 256, 512]λ κ° ViT λ μ΄μ΄μμ μ¬μ©λλ©°, μ΄λ―Έμ§μ κ° λ 벨μμ μ€μν μ 보λ₯Ό μΆμΆνμ¬ νΉμ§μ νμ΅ν©λλ€.
- neck:
- μ΄μ νμ§ λͺ¨λ (Anomaly Detection Module): μ΄ λͺ¨λμ CLIPμμ μΆμΆλ νΉμ§μ κΈ°λ°μΌλ‘ μ΄λ―Έμ§λ₯Ό λΆμνκ³ μ΄μ μ¬λΆλ₯Ό νλ¨ν©λλ€. μ΄ λ¨κ³μμλ μ΄λ―Έμ§ λ΄μμ μ μκ³Ό λΉμ μ λ°μ΄ν°λ₯Ό ꡬλ³νκΈ° μν μ€μν μ²λ¦¬κ° μ΄λ£¨μ΄μ§λλ€.
- λμ‘° νμ΅ (Contrastive Learning): λμ‘° νμ΅ λ°©λ²μ μ μ μ΄λ―Έμ§μ λΉμ μ μ΄λ―Έμ§ κ°μ μ°¨μ΄λ₯Ό νμ΅νμ¬, μ΄λ―Έμ§μ μ΄μ μ¬λΆλ₯Ό λμ± λͺ
ννκ² κ΅¬λΆν μ μκ² λμμ€λλ€.
- head:
- μ΄μ νμ§ ν€λ (Anomaly Detection Head): λͺ¨λΈμ λ§μ§λ§ λΆλΆμΌλ‘, μ΄ κ³μΈ΅μ μ΄λ―Έμ§κ° λΉμ μμ μΈμ§ μ μμ μΈμ§λ₯Ό κ²°μ ν©λλ€.
- outputs:
- μ΄μ μ μ (Anomaly Score): λͺ¨λΈμ μ΄λ―Έμ§κ° μ΄μμΈμ§ μλμ§λ₯Ό λνλ΄λ μ μ(μ: 1μ μ΄μ, 0μ μ μ)λ₯Ό μΆλ ₯ν©λλ€.
- ν΄λμ€ νλ₯ (Class Probabilities): λͺ¨λΈμ κ° ν΄λμ€μ λν νλ₯ μ μΆλ ₯νλ©°, μ΄ νλ₯ μ ν΅ν΄ κ²°ν¨μ΄ μλμ§ μλμ§μ μ¬λΆλ₯Ό νλ¨ν©λλ€.
# Optimizer and Loss Function
- **training:**
- optimizer:
- name: AdamW # AdamW μ΅ν°λ§μ΄μ (κ°μ€μΉ κ°μ ν¬ν¨)
- lr: 0.0001 # νμ΅λ₯
- loss:
- classification_loss: 1.0 # λΆλ₯ μμ€ (κ΅μ°¨ μνΈλ‘νΌ)
- anomaly_loss: 1.0 # κ²°ν¨ νμ§ μμ€ (μ΄μ νμ§ λͺ¨λΈμ λν μμ€)
- contrastive_loss: 1.0 # λμ‘° νμ΅ μμ€ (μ μ¬λ κΈ°λ° μμ€)
# Metrics
- **metrics:**
- Precision # μ λ°λ (Precision)
- Recall # μ¬νμ¨ (Recall)
- mAP # νκ· μ λ°λ (Mean Average Precision)
- F1-Score # F1-μ μ (κ· ν μ‘ν νκ° μ§ν)
# Training Parameters
**νμ΄νΌνλΌλ―Έν° μ€μ **
- Learning Rate: 0.001.
- Batch Size: 8.
- Epochs: 200.
# Pre-trained CLIP model
| Model | Download |
| --- | --- |
| ViT-B/32 | [download](https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt) |
| ViT-B/16 | [download](https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt) |
| ViT-L/14 | [download](https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt) |
| ViT-L/14@336px | [download](https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt) |
# Evaluation Parameters
- F1-score: 90%μ΄μ.
# νμ΅ μ±λ₯ λ° ν
μ€νΈ κ²°κ³Ό
- **νμ΅μ±λ₯ κ²°κ³Όκ³Ό κ·Έλν**:
<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">
<div style="text-align: center; margin-right: 20px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/7Q1RzKyia-WNSCJHnk2-d.png" height="80%" width="100%" style="margin-right:5px;">
</div>
<div style="text-align: center; margin-right: 20px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/9PyBtPZMACgN1lJOqlVbG.png" height="80%" width="100%" style="margin-right:5px;">
</div>
</div>
<p style="text-align: center;">νμ΅ κ³Όμ μμ</p>
<div style="display: flex; justify-content: space-between;">
<div style="text-align: center; margin-right: 20px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/_lUD77x-yueXycuIn7jya.png" height="80%" width="100%" style="margin-right:5px;">
<p>1μ°¨ νμ΅ μ±λ₯</p>
</div>
<div style="text-align: center; margin-right: 20px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/NHDH9N94cI-KqP8k-ASUN.png" height="80%" width="100%" style="margin-right:5px;">
<p>2μ°¨ νμ΅ μ±λ₯</p>
</div>
<div style="text-align: center; margin-right: 20px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/6n0DnnQjXD8Ql-p3Owxan.png" height="80%" width="100%" style="margin-right:5px;">
<p>3μ°¨ νμ΅ μ±λ₯</p>
</div>
</div>
- **ν
μ€νΈ κ²°κ³Όν**:
<div style="display: flex; justify-content: space-between;">
<div style="text-align: center; margin-right: 20px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/u1DQHjXM41DMq1JIUOGlp.png" height="100%" width="100%" style="margin-right:5px;">
</div>
<div style="text-align: center; margin-right: 20px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/ndQ60TKlheW8hmOrMBELU.png" height="100%" width="100%" style="margin-right:5px;">
</div>
</div>
- **ν
μ€νΈ κ²°κ³Ό**:
<div style="display: flex; justify-content: space-between;">
<div style="text-align: center; margin-right: 20px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/A91V0GdrcUcX01cC-biG9.png" height="600" width="1000" style="margin-right:5px;">
<p>Anomaly Product</p>
</div>
<div style="text-align: center; margin-right: 20px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e7d0935ea025ead9623dde/PxleIhphzViTGCubVhWn7.png" height="600" width="1000" style="margin-right:5px;">
<p>Normal Product</p>
</div>
</div>
# μ€μΉ λ° μ€ν κ°μ΄λΌμΈ
μ΄ λͺ¨λΈμ μ€ννλ €λ©΄ Pythonκ³Ό ν¨κ» λ€μ λΌμ΄λΈλ¬λ¦¬κ° νμν©λλ€:
- **ftfy==6.2.0**: ν
μ€νΈ μ κ·ν λ° μΈμ½λ© λ¬Έμ λ₯Ό ν΄κ²°νλ λΌμ΄λΈλ¬λ¦¬.
- **matplotlib==3.9.0**: λ°μ΄ν° μκ°ν λ° κ·Έλν μμ±μ μν λΌμ΄λΈλ¬λ¦¬.
- **numpy==1.24.3**: μμΉ μ°μ°μ μν ν΅μ¬ λΌμ΄λΈλ¬λ¦¬.
- **opencv_python==4.9.0.80**: μ΄λ―Έμ§ λ° λΉλμ€ μ²λ¦¬μ© λΌμ΄λΈλ¬λ¦¬.
- **pandas==2.2.2**: λ°μ΄ν° λΆμ λ° μ‘°μμ μν λΌμ΄λΈλ¬λ¦¬.
- **Pillow==10.3.0**: μ΄λ―Έμ§ νμΌ μ²λ¦¬ λ° λ³νμ μν λΌμ΄λΈλ¬λ¦¬.
- **PyQt5==5.15.10**: GUI μ ν리μΌμ΄μ
κ°λ°μ μν νλ μμν¬.
- **PyQt5_sip==12.13.0**: PyQt5μ Python κ°μ μΈν°νμ΄μ€λ₯Ό μ 곡νλ λΌμ΄λΈλ¬λ¦¬.
- **regex==2024.5.15**: μ κ· ννμ μ²λ¦¬λ₯Ό μν λΌμ΄λΈλ¬λ¦¬.
- **scikit_learn==1.2.2**: κΈ°κ³ νμ΅ λ° λ°μ΄ν° λΆμμ μν λΌμ΄λΈλ¬λ¦¬.
- **scipy==1.9.1**: κ³Όν λ° κΈ°μ κ³μ°μ μν λΌμ΄λΈλ¬λ¦¬.
- **setuptools==59.5.0**: Python ν¨ν€μ§ λ°°ν¬ λ° μ€μΉλ₯Ό μν λΌμ΄λΈλ¬λ¦¬.
- **scikit-image**: μ΄λ―Έμ§ μ²λ¦¬ λ° λΆμμ μν λΌμ΄λΈλ¬λ¦¬.
- **tabulate==0.9.0**: ν ννλ‘ λ°μ΄ν°λ₯Ό μΆλ ₯νλ λΌμ΄λΈλ¬λ¦¬.
- **thop==0.1.1.post2209072238**: PyTorch λͺ¨λΈμ FLOP μλ₯Ό κ³μ°νλ λꡬ.
- **timm==0.6.13**: λ€μν μ΅μ μ΄λ―Έμ§ λΆλ₯ λͺ¨λΈμ μ 곡νλ λΌμ΄λΈλ¬λ¦¬.
- **torch==2.0.0**: PyTorch λ₯λ¬λ νλ μμν¬.
- **torchvision==0.15.1**: μ»΄ν¨ν° λΉμ μμ
μ μν PyTorch νμ₯ λΌμ΄λΈλ¬λ¦¬.
- **tqdm==4.65.0**: μ§ν μν©μ μκ°μ μΌλ‘ νμνλ λΌμ΄λΈλ¬λ¦¬.
- **pyautogui**: GUI μλνλ₯Ό μν λΌμ΄λΈλ¬λ¦¬.
- Install Python libraries
```
pip install -r requirements.txt
```
## λͺ¨λΈ μ€ν λ¨κ³:
### β
Dataset configuration
- Dataset configuration as example below
```
βββ data/
β βββ COMP_1/
β β βββ product_1/
β β β βββgrouth_truth
β β β β βββanomaly_1
β β β β βββanomaly_2
β β β β
β β β βββtest/
β β β β βββgood
β β β β βββanomaly_1
β β β β βββanomaly_2
β β β β
β β β βββtrain/
β β β β βββgood
β β β β βββanomaly_1
β β β β βββanomaly_2
β β β β
β β βββ product_2/
β β β β
β β βββ meta.json
β β β
β βββ COMP_2/
β β
```
- Generate JSON file storing all the above information of dataset ( -> meta_train.json, meta_test.json)
```ruby
cd dataset_config
python dataset_get_json.py
```
- Making all grouth_truth (only anomaly mask) by hand
```ruby
cd dataset_config
python image_ground_truth.py
```
- Dataset configuration for train and test
```ruby
cd training_libs
python dataset.py
```
β _ _init_ _ λ©μλλ λ°μ΄ν°μ
μ λ£¨νΈ λλ ν 리, λ³ν ν¨μ, λ°μ΄ν°μ
μ΄λ¦, λͺ¨λλ₯Ό μ
λ ₯μΌλ‘ λ°μ
β λ©ν μ 보λ₯Ό λ΄μ JSON νμΌ (meta_train.json)μ μ½μ΄μ ν΄λμ€ μ΄λ¦ λͺ©λ‘κ³Ό λͺ¨λ λ°μ΄ν° νλͺ©μ 리μ€νΈμ μ μ₯
β generate_class_info ν¨μλ₯Ό νΈμΆνμ¬ ν΄λμ€ μ 보λ₯Ό μμ±νκ³ ν΄λμ€ μ΄λ¦μ ν΄λμ€ IDμ λ§€ν
β _ _len_ _ λ©μλλ λ°μ΄ν°μ
μ μν μλ₯Ό λ°ν
β _ _getitem_ _ λ©μλλ μ£Όμ΄μ§ μΈλ±μ€μ μν λ°μ΄ν°λ₯Ό λ°ν
β μ΄λ―Έμ§ κ²½λ‘λ₯Ό ν΅ν΄ μ΄λ―Έμ§λ₯Ό μ½κ³ , μ΄μ μ¬λΆμ λ°λΌ λ§μ€ν¬ μ΄λ―Έμ§λ₯Ό μμ±
β νμμ μ΄λ―Έμ§μ λ§μ€ν¬μ λ³ν ν¨μλ₯Ό μ μ©
β μ΄λ―Έμ§, λ§μ€ν¬, ν΄λμ€ μ΄λ¦, μ΄μ μ¬λΆ, μ΄λ―Έμ§ κ²½λ‘, ν΄λμ€ IDλ₯Ό ν¬ν¨ν λμ
λ리λ₯Ό λ°ν
### β
Image pre-processing (transformation) for train and test
```ruby
training_libs/utils.py
```
```ruby
AnomalyCLIP_lib/transform.py
```
- **Data Processing Techniques:**
- normalization:
description: "μ΄λ―Έμ§ ν½μ
κ°μ νκ· λ° νμ€νΈμ°¨λ‘ νμ€ν"
method: "'Normalize' from 'torchvision.transforms'"
- max_resize:
description: "μ΄λ―Έμ§μ μ΅λ ν¬κΈ°λ₯Ό μ μ§νλ©°, λΉμ¨μ λ§μΆκ³ ν¨λ©μ μΆκ°νμ¬ ν¬κΈ° μ‘°μ "
method: "Custom 'ResizeMaxSize' class"
- random_resized_crop:
description: "νλ ¨ μ€μ μ΄λ―Έμ§λ₯Ό λλ€μΌλ‘ μλ₯΄κ³ ν¬κΈ°λ₯Ό μ‘°μ νμ¬ λ³νμ μΆκ°"
method: "'RandomResizedCrop' from 'torchvision.transforms'"
- resize:
description: "λͺ¨λΈ μ
λ ₯μ λ§κ² μ΄λ―Έμ§λ₯Ό κ³ μ λ ν¬κΈ°λ‘ μ‘°μ "
method: "'Resize' with BICUBIC interpolation"
- center_crop:
description: "μ΄λ―Έμ§μ μ€μ λΆλΆμ μ§μ λ ν¬κΈ°λ‘ μλ₯΄κΈ°"
method: "'CenterCrop'"
- to_tensor:
description: "μ΄λ―Έμ§λ₯Ό PyTorch ν
μλ‘ λ³ν"
method: "'ToTensor'"
- augmentation (optional):
description: "λ°μ΄ν° μ¦κ°μ μν΄ λ€μν λλ€ λ³ν μ μ©, 'AugmentationCfg'λ‘ μ€μ κ°λ₯"
method: "Uses 'timm' library if specified"
### β
Prompt generating
```ruby
training_lib/prompt_ensemble.py
```
π **Prompts Built in the Code**
1. Normal Prompt: *'["{ }"]'*
β Normal Prompt Example: "object"
2. Anomaly Prompt: *'["damaged { }"]'*
β Anomaly Prompt Example: "damaged object"
π **Construction Process**
1. *'prompts_pos (Normal)'*: Combines the class name with the normal template
2. *'prompts_neg (Anomaly)'*: Combines the class name with the anomaly template
### β
Initial setting for training
- Define the path to the training dataset and model checkpoint saving
```ruby
parser.add_argument("--train_data_path", type=str, default="./data/", help="train dataset path")
parser.add_argument("--dataset", type=str, default='smoke_cloud', help="train dataset name")
parser.add_argument("--save_path", type=str, default='./checkpoint/', help='path to save results')
```
### β
Hyper parameters setting
- Set the depth parameter: depth of the embedding learned during prompt training. This affects the model's ability to learn complex features from the data
```ruby
parser.add_argument("--depth", type=int, default=9, help="image size")
```
- Define the size of input images used for training (pixel)
```ruby
parser.add_argument("--image_size", type=int, default=518, help="image size")
```
- Setting parameters for training
```ruby
parser.add_argument("--epoch", type=int, default=500, help="epochs")
parser.add_argument("--learning_rate", type=float, default=0.0001, help="learning rate")
parser.add_argument("--batch_size", type=int, default=8, help="batch size")
```
- Size/depth parameter for the DPAM (Deep Prompt Attention Mechanism)
```ruby
parser.add_argument("--dpam", type=int, default=20, help="dpam size")
1. ViT-B/32 and ViT-B/16: --dpam should be around 10-13
2. ViT-L/14 and ViT-L/14@336px: --dpam should be around 20-24
```
```ruby
β DPAM is used to refine and enhance specific layers of a model, particularly in Vision Transformers (ViT).
β Helps the model focus on important features within each layer through an attention mechanism
β Layers: DPAM is applied across multiple layers, allowing deeper and more detailed feature extraction
β Number of layers DPAM influences is adjustable (--dpam), controlling how much of the model is fine-tuned.
β If you want to refine the entire model, you can set --dpam to the number of layers in the model (e.g., 12 for ViT-B and 24 for ViT-L).
β If you want to focus only on the final layers (where the model usually learns complex features), you can choose fewer DPAM layers.
```
### β
Test process
π **Load pre-trained and Fine tuned (Checkpoints) models**
1. Pre-trained mode (./pre-trained model/):
```ruby
β Contains the pre-trained model (ViT-B, ViT-L,....)
β Used as the starting point for training the CLIP model
β Pre-trained model helps speed up and improve training by leveraging previously learned features
```
2. Fine-tuned models (./checkpoint/):
```ruby
β "epoch_N.pth" files in this folder store the model's states during the fine-tuning process.
β Each ".pth" file represents a version of the model fine-tuned from the pre-trained model
β These checkpoints can be used to resume fine-tuning, evaluate the model at different stages, or select the best-performing version
```
# λͺ¨λΈ 곡격 μ·¨μ½μ λΆμ
λ³Έ λ¬Έμλ AnomalyCLIP λͺ¨λΈμ μ·¨μ½μ λΆμ λ° μ λμ 곡격(Adversarial Attacks)μ λν λ°©μ΄ λμ±
μ 체κ³μ μΌλ‘ μ립νκΈ° μν΄ μμ±λμμ΅λλ€.
λͺ¨λΈμ μ λ’°μ±κ³Ό μμ μ±μ ν보νκ³ λ°μ΄ν° 무결μ±μ μ μ§νκΈ° μν΄, λ°μ΄ν° λ° λͺ¨λΈ μμ€μ λ°©μ΄ μ λ΅μ ꡬννκ³ μ±λ₯μ νκ°ν κ²°κ³Όλ₯Ό ν¬ν¨ν©λλ€.
## **1. μ·¨μ½μ λΆμ**
- ### ** μ λμ 곡격 μλ리μ€**
1. **Adversarial Examples:**
- **μ€λͺ
:** μ
λ ₯ λ°μ΄ν°μ μμ λ
Έμ΄μ¦λ₯Ό μΆκ°νμ¬ λͺ¨λΈμ μμΈ‘μ μ곑.
- **μ:** μ μ μ΄λ―Έμ§λ₯Ό κ²°ν¨ μ΄λ―Έμ§λ‘ μμΈ‘νλλ‘ μ λ.
2. **Data Poisoning:**
- **μ€λͺ
:** νμ΅ λ°μ΄ν°μ μ
μμ λ°μ΄ν°λ₯Ό μ½μ
νμ¬ λͺ¨λΈ νμ΅μ μ곑.
- **μ:** λΉμ μ λ°μ΄ν°λ₯Ό μ μ λ°μ΄ν°λ‘ νμ΅μν€λ κ²½μ°.
3. **Evasion Attacks:**
- **μ€λͺ
:** μΆλ‘ μ λͺ¨λΈμ λΆλ₯ κ²°κ³Όλ₯Ό μ‘°μ.
- **μ:** κ²°ν¨ λ°μ΄ν°λ₯Ό μ μμΌλ‘ μμΈ‘νλλ‘ μ λ.
- ### **λͺ¨λΈ λ° λ°μ΄ν°μ
μν₯**
- **μ±λ₯ μ ν:** μ λμ μν μ
λ ₯ μ λͺ¨λΈμ μ νλ κ°μ.
- **λ¬΄κ²°μ± μμ:** λ°μ΄ν° λ³μ‘°λ‘ μΈν΄ νμ΅λ λͺ¨λΈμ΄ μ€μ νκ²½μμ μ λ’°μ±μ μμ€.
- **μ
μμ νμ© κ°λ₯μ±:** λͺ¨λΈμ μμ¬κ²°μ μ΄ μ€μλνμ¬ μμ° νμ§ κ΄λ¦¬ μ€ν¨ κ°λ₯μ± μ¦κ°.
## **2. λμ λ°©μ**
- ### ** λ°μ΄ν° μμ€ λ°©μ΄ λμ±
**
1. **λ°μ΄ν° μ μ :**
- νλ¦Ώνκ±°λ μλ¦° μ΄λ―Έμ§ μ κ±°.
- λ°μ΄ν° λ
Έμ΄μ¦ μ κ±° λ° κ²°ν¨ λ³΅κ΅¬.
- **κ²°κ³Ό:** λ°μ΄ν° νμ§ κ°νλ‘ μ λμ λ
Έμ΄μ¦ ν¨κ³Ό κ°μ.
2. **λ°μ΄ν° μ¦κ°(Data Augmentation):**
- λλ€ νμ , ν¬κΈ° μ‘°μ , λ°κΈ° λ° λλΉ μ‘°μ .
- Gaussian Noise λ° Salt-and-Pepper Noise μΆκ°.
- **κ²°κ³Ό:** λ°μ΄ν° λ€μμ± ν보 λ° λͺ¨λΈ μΌλ°ν μ±λ₯ κ°ν.
3. **λ°μ΄ν° λ¬΄κ²°μ± κ²μ¦:**
- κ° λ°μ΄ν° ν΄μκ°(MD5) μ μ₯ λ° μλ³μ‘° μ¬λΆ νμΈ.
- **κ²°κ³Ό:** λ°μ΄ν°μ
μ λ’°μ± λ° λ¬΄κ²°μ± λ³΄μ₯.
- ### **λͺ¨λΈ μμ€ λ°©μ΄ λμ±
**
1. **Adversarial Training:**
- FGSM κΈ°λ°μ μ λμ μνμ νμ΅ λ°μ΄ν°μ ν¬ν¨.
- **κ²°κ³Ό:** μ λμ μνμμλ νκ· μ νλ 5% ν₯μ.
2. **Gradient Masking:**
- κ·ΈλλμΈνΈλ₯Ό μ¨κ²¨ λͺ¨λΈμ΄ μ λμ 곡격μ λ
ΈμΆλμ§ μλλ‘ λ°©μ΄.
3. **Temperature Scaling:**
- λͺ¨λΈμ μμΈ‘ νλ₯ μ μ‘°μ νμ¬ μ λμ μν λ―Όκ°λ μν.
- ### **μμ€ν
μμ€ λ°©μ΄ λμ±
**
1. **μ€μκ° νμ§ λ° λμ:**
- μ
λ ₯ λ°μ΄ν°μ μ΄μ ν¨ν΄μ μ€μκ°μΌλ‘ νμ§νλ μμ€ν
ꡬμΆ.
- **κ²°κ³Ό:** μ λμ 곡격 λ°μ μ μ¦κ°μ μΈ κ²½κ³ λ° λμ κ°λ₯.
2. **μλνλ λ°©μ΄ λꡬ:**
- Adversarial Examples μμ± λ° λ°©μ΄ ν
μ€νΈ μλν.
## **3. μ€ν κ²°κ³Ό**
- ### **νκ° λ°μ΄ν°**
- **λ°μ΄ν°μ
ꡬμ±:**
- μ μ λ°μ΄ν°: 110건
- κ²°ν¨ λ°μ΄ν°: 10건
- μ λμ λ°μ΄ν°(FGSM 곡격): 100건
- ### **μ£Όμ μ±λ₯ μ§ν**
λ©νΈλ¦ | κΈ°λ³Έ λ°μ΄ν° | μ λμ λ°μ΄ν° | λ³νμ¨
-----------------|-------------|---------------|--------
Accuracy | 98% | 92% | -6%
F1 Score | 0.935 | 0.91 | -2.5%
False Positive | 2% | 5% | +3%
False Negative | 3% | 7% | +4%
## **4. ν₯ν κ³ν**
1. **λ€μν 곡격 κΈ°λ² ν
μ€νΈ:**
- PGD, DeepFool λ± μλ‘μ΄ κ³΅κ²© κΈ°λ² μ μ© λ° νκ°.
2. **λͺ¨λΈ κ°μ :**
- Contrastive Learning λ° μμλΈ νμ΅μ ν΅ν κ²¬κ³ μ± κ°ν.
3. **μ€μκ° λ°©μ΄ μμ€ν
ꡬμΆ:**
- λͺ¨λΈμ μ€μκ° μμΈ‘ λ°μ΄ν°λ₯Ό λΆμνμ¬ μ λμ μ
λ ₯ νμ§ λ° μ°¨λ¨.
# References
- AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection [[github](https://github.com/zqhang/AnomalyCLIP.git)] |