from collections import OrderedDict from typing import Tuple, Union import numpy as np import torch from torch import nn class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1): super().__init__() # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.relu2 = nn.ReLU(inplace=True) self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu3 = nn.ReLU(inplace=True) self.downsample = None self.stride = stride if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 self.downsample = nn.Sequential(OrderedDict([ ("-1", nn.AvgPool2d(stride)), ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), ("1", nn.BatchNorm2d(planes * self.expansion)) ])) def forward(self, x: torch.Tensor): identity = x out = self.relu1(self.bn1(self.conv1(x))) out = self.relu2(self.bn2(self.conv2(out))) out = self.avgpool(out) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu3(out) return out # implement attention module for v-v self-attention class Attention(nn.Module): def __init__(self, out_dim, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., settings=''): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(out_dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.settings = settings def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # original self-attention for the original path attn_ori = (q @ k.transpose(-2, -1)) * self.scale attn_ori = attn_ori.softmax(dim=-1) attn_ori = self.attn_drop(attn_ori) # replace k & q by v k = v q = k # self-attention, higher temperate for resnets performs better attn = (q @ k.transpose(-2, -1)) * self.scale attn = (attn).softmax(dim=-1) attn = self.attn_drop(attn) x_ori = (attn_ori @ v).transpose(1, 2).reshape(B, N, C) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj_drop(self.proj(x)) x_ori = self.proj_drop(self.proj(x_ori)) return [x, x_ori] class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, design_details = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None if isinstance(self.attn, Attention): x = x.transpose(0, 1) x, x_ori = self.attn(x) return [x.transpose(0, 1), x_ori.transpose(0, 1)] else: return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x, whole = False, ffn = False): # print("xxxxx",x.shape) # dual paths for blocks deeper than "d" if isinstance(self.attn, Attention): if isinstance(x, list): if not ffn: x, x_ori = x x_res = self.attention(self.ln_1(x_ori)) x_res, x_ori_res = x_res x_ori += x_ori_res x_ori = x_ori + self.mlp(self.ln_2(x_ori)) x += x_res # skip ffn for the new path # print('hellloooo') return [x, x_ori] else: x, x_ori_1 = x x_res = self.attention(self.ln_1(x_ori_1)) x_res, x_ori_res = x_res x_ori = x_ori_1 + x_ori_res x_ori = x_ori + self.mlp(self.ln_2(x_ori)) x += x_res # skip ffn for the new path x = x_res + x_ori_1 x = x + self.mlp(self.ln_2(x)) return [x, x_ori] # start of dual path else: x_res = self.attention(self.ln_1(x)) if isinstance(x_res, list): x_res, x_ori_res = x_res x_ori = x + x_ori_res x_ori = x_ori + self.mlp(self.ln_2(x_ori)) x += x_res return [x, x_ori] # singl path before "d" else: x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class ResidualAttentionBlock_learnable_token(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, design_details=None, text_layer=False, i = 0): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask self.i = i self.compound_prompt_nctx = design_details['learnabel_text_embedding_length'] self.text_layer = text_layer if i == 0: self.first_layer = True else: self.first_layer = False def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None if isinstance(self.attn, Attention): x = x.transpose(0, 1) x, x_ori = self.attn(x) return [x.transpose(0, 1), x_ori.transpose(0, 1)] else: return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, inputs): # dual paths for blocks deeper than "d" if isinstance(self.attn, Attention): x = inputs[0] if isinstance(x, list): x, x_ori = x x_res = self.attention(self.ln_1(x_ori)) x_res, x_ori_res = x_res x_ori += x_ori_res x_ori = x_ori + self.mlp(self.ln_2(x_ori)) x += x_res # skip ffn for the new path return [x, x_ori] # start of dual path else: x_res = self.attention(self.ln_1(x)) if isinstance(x_res, list): x_res, x_ori_res = x_res x_ori = x + x_ori_res x_ori = x_ori + self.mlp(self.ln_2(x_ori)) x += x_res return [x, x_ori] # singl path before "d" else: x = inputs[0] compound_prompts_deeper = inputs[1] counter = inputs[2] if not self.first_layer: # First check if the ith layer needs compound prompts or not if not (counter > len(compound_prompts_deeper) - 1): # Appending the learnable tokens in different way # x -> [77, NCLS, DIM] # First remove the learnable tokens from previous layer prefix = x[:1, :, :] suffix = x[1 + self.compound_prompt_nctx:, :, :] textual_context = compound_prompts_deeper[counter] textual_context = textual_context.expand(x.shape[1], -1, -1).permute(1, 0, 2).half() # Add the learnable tokens of this layer with the input, replaced by previous # layer learnable tokens x = torch.cat([prefix, textual_context, suffix], dim=0) # Once done, update the counter, so that the next time, it does not use same learnable tokens counter += 1 x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return [x, compound_prompts_deeper, counter] class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, need_weights: bool = False, design_details = None ,text_layer = False): super().__init__() self.width = width self.layers = layers self.text_layer = text_layer self.design_deatails = design_details print("text_layer", self.text_layer) if self.text_layer and (design_details is not None): self.resblocks = nn.ModuleList([ResidualAttentionBlock_learnable_token(width, heads, attn_mask, design_details, text_layer, i=i) for i in range(layers)]) else: self.resblocks = nn.ModuleList([ResidualAttentionBlock(width, heads, attn_mask,) for i in range(layers)]) def ori_CLIP_with_patch_forward(self, x, out_layers): idx = 0 out_tokens = [] for r in self.resblocks: idx += 1 x = r(x) if idx in out_layers: if isinstance(x, list): out_tokens.append(x[1]) else: out_tokens.append(x) return [x, x], out_tokens def AnomalyCLIP_forward(self, x, out_layers, ffn): idx = 0 out_tokens = [] for r in self.resblocks: idx += 1 x = r(x, ffn = ffn) # print("out_layers", out_layers, idx) if idx in out_layers: if isinstance(x, list): out_tokens.append(x[0]) else: out_tokens.append(x) return x, out_tokens def forward(self, x: torch.Tensor, out_layers = [6, 12, 18, 24], DPAM_layer = None, ffn = False): # visual encoder forward if not self.text_layer: out_tokens = [] if DPAM_layer is None: [x, x], out_tokens = self.ori_CLIP_with_patch_forward(x, out_layers) return [x, x], out_tokens else: x, out_tokens = self.AnomalyCLIP_forward(x, out_layers, ffn) return x, out_tokens # text encoder forward # ori text embedding elif self.design_deatails is None: for idx, r in enumerate(self.resblocks): x = r(x) return x # insert learnable text embedding elif self.design_deatails is not None: for idx, r in enumerate(self.resblocks): x = r(x) return x[0] def get_cast_dtype(self) -> torch.dtype: return self.resblocks[0].mlp.c_fc.weight.dtype class VisionTransformer(nn.Module): def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads, need_weights=True) self.attn = None self.embed_dim = width self.num_heads = heads self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) @torch.no_grad() def DAPM_replace(self, DPAM_layer): if DPAM_layer is not None: for i in range(1, DPAM_layer): self.attn = Attention(self.embed_dim, self.embed_dim, self.num_heads, True) self.attn.qkv.weight.data = self.transformer.resblocks[-i].attn.in_proj_weight.clone() self.attn.qkv.bias.data = self.transformer.resblocks[-i].attn.in_proj_bias.clone() self.attn.proj.weight.data = self.transformer.resblocks[-i].attn.out_proj.weight.clone() self.attn.proj.bias.data = self.transformer.resblocks[-i].attn.out_proj.bias.clone() self.transformer.resblocks[-i].attn = self.attn @torch.no_grad() def forward(self, x: torch.Tensor, features_list, ori_patch = False, proj_use = True, DPAM_layer = None, ffn = False): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] side = int((self.positional_embedding.shape[0] - 1) ** 0.5) new_side = int((x.shape[1] - 1) ** 0.5) # update the position embedding during inference for varied input size if side != new_side: new_pos = self.positional_embedding[1:, :].reshape(-1, side, side, x.shape[-1]).permute(0, 3, 1, 2) new_pos = torch.nn.functional.interpolate(new_pos, (new_side, new_side), mode='bilinear') new_pos = new_pos.reshape(-1, x.shape[-1], new_side * new_side).transpose(1, 2) self.positional_embedding.data = torch.cat([self.positional_embedding[:1, :], new_pos[0]], 0) pos = self.positional_embedding.to(x.dtype) x = x + pos x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND [x, x_ori], patch_tokens = self.transformer(x, features_list, DPAM_layer = DPAM_layer, ffn = ffn) if True: patch_token_list = [] for patch_token in patch_tokens: patch_token = self.ln_post(patch_token.permute(1, 0, 2)) @ self.proj # LND -> NLD patch_token_list.append(patch_token) patch_tokens = patch_token_list return x_ori[0, :, :] @ self.proj, patch_tokens return x from thop import profile class AnomalyCLIP(nn.Module): def __init__(self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int, design_details = None ): super().__init__() self.context_length = context_length if isinstance(vision_layers, (tuple, list)): vision_heads = vision_width * 32 // 64 self.visual = ModifiedResNet( layers=vision_layers, output_dim=embed_dim, heads=vision_heads, input_resolution=image_resolution, width=vision_width ) else: vision_heads = vision_width // 64 self.visual = VisionTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim ) self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask(), text_layer=True, design_details=design_details ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask @property def dtype(self): return self.visual.conv1.weight.dtype def encode_image(self, image, feature_list = [], ori_patch = False, proj_use = True, DPAM_layer = None, ffn = False): return self.visual(image.type(self.dtype), feature_list, ori_patch = ori_patch, proj_use = proj_use, DPAM_layer = DPAM_layer, ffn = ffn) def encode_text(self, text): x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding.type(self.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x def encode_text_learn(self, prompts, tokenized_prompts, deep_compound_prompts_text = None, normalize: bool = False): cast_dtype = self.transformer.get_cast_dtype() # x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] # x = x + self.positional_embedding.to(cast_dtype) x = prompts + self.positional_embedding.to(cast_dtype) x = x.permute(1, 0, 2) # NLD -> LND # print("test", x.shape, len(deep_compound_prompts_text)) if deep_compound_prompts_text is None: x = self.transformer(x) else: x = self.transformer([x, deep_compound_prompts_text, 0]) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) # [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection return x def forward(self, image, text): image_features = self.encode_image(image) text_features = self.encode_text(text) # normalized features image_features = image_features / image_features.norm(dim=1, keepdim=True) text_features = text_features / text_features.norm(dim=1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logits_per_image.t() # shape = [global_batch_size, global_batch_size] return logits_per_image, logits_per_text