#%% import AnomalyCLIP_lib import torch import argparse import torch.nn.functional as F from training_libs.prompt_ensemble import AnomalyCLIP_PromptLearner from training_libs.loss import FocalLoss, BinaryDiceLoss from training_libs.utils import normalize from training_libs.dataset import Dataset_test from training_libs.logger import get_logger from tqdm import tqdm import os import random import numpy as np from tabulate import tabulate from training_libs.utils import get_transform def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False from training_libs.visualization import visualizer from training_libs.metrics import image_level_metrics, pixel_level_metrics from tqdm import tqdm from scipy.ndimage import gaussian_filter def test(args): img_size = args.image_size features_list = args.features_list dataset_dir = args.data_path save_path = args.save_path dataset_name = args.dataset logger = get_logger(args.save_path) device = "cuda" if torch.cuda.is_available() else "cpu" # device = "gpu" AnomalyCLIP_parameters = {"Prompt_length": args.n_ctx, "learnabel_text_embedding_depth": args.depth, "learnabel_text_embedding_length": args.t_n_ctx} model, _ = AnomalyCLIP_lib.load("pre-trained models/clip/ViT-B-32.pt", device=device, design_details = AnomalyCLIP_parameters) model.eval() # torch.save(model.state_dict(),"pre-trained models/clip") preprocess, target_transform = get_transform(args) test_data = Dataset_test(root=args.data_path, transform=preprocess, target_transform=target_transform, dataset_name = args.dataset) test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=1, shuffle=False) obj_list = test_data.obj_list results = {} metrics = {} for obj in obj_list: results[obj] = {} results[obj]['gt_sp'] = [] results[obj]['pr_sp'] = [] results[obj]['imgs_masks'] = [] results[obj]['anomaly_maps'] = [] metrics[obj] = {} metrics[obj]['pixel-auroc'] = 0 metrics[obj]['pixel-aupro'] = 0 metrics[obj]['image-auroc'] = 0 metrics[obj]['image-ap'] = 0 prompt_learner = AnomalyCLIP_PromptLearner(model.to(device=device), AnomalyCLIP_parameters) #Add check-point from trained model with normal images # checkpoint = torch.load("checkpoint/241120_SP_DPAM_13_518/epoch_500.pth",map_location=torch.device('cpu')) # prompt_learner.load_state_dict(checkpoint["prompt_learner"]) #Add check-point from trained model with normal images # checkpoint = torch.load(args.checkpoint_path,map_location=torch.device(device=device)) # prompt_learner.load_state_dict(checkpoint["prompt_learner"]) prompt_learner.to(device) model.to(device) model.visual.DAPM_replace(DPAM_layer = 13) prompts, tokenized_prompts, compound_prompts_text = prompt_learner(cls_id = None) print("print(prompts)") print(prompts) text_features = model.encode_text_learn(prompts, tokenized_prompts, compound_prompts_text).float() text_features = torch.stack(torch.chunk(text_features, dim = 0, chunks = 2), dim = 1) text_features = text_features/text_features.norm(dim=-1, keepdim=True) model.to(device) for idx, items in enumerate(tqdm(test_dataloader)): image = items['img'].to(device) cls_name = items['cls_name'] cls_id = items['cls_id'] gt_mask_initial = items['img_mask'] #convert gt mask to good (0) and anomaly (1) gt_mask = items['img_mask'] gt_mask[gt_mask > 0.5], gt_mask[gt_mask <= 0.5] = 1, 0 results[cls_name[0]]['imgs_masks'].append(gt_mask) # px results[cls_name[0]]['gt_sp'].extend(items['anomaly'].detach().cpu()) with torch.no_grad(): image_features, patch_features = model.encode_image(image, features_list, DPAM_layer = 20) image_features = image_features / image_features.norm(dim=-1, keepdim=True) text_probs = image_features @ text_features.permute(0, 2, 1) text_probs = (text_probs/0.07).softmax(-1) text_probs = text_probs[:, 0, 1] anomaly_map_list = [] for idx, patch_feature in enumerate(patch_features): if idx >= args.feature_map_layer[0]: patch_feature = patch_feature/ patch_feature.norm(dim = -1, keepdim = True) similarity, _ = AnomalyCLIP_lib.compute_similarity(patch_feature, text_features[0]) similarity_map = AnomalyCLIP_lib.get_similarity_map(similarity[:, 1:, :], args.image_size) anomaly_map = (similarity_map[...,1] + 1 - similarity_map[...,0])/2.0 anomaly_map_list.append(anomaly_map) anomaly_map = torch.stack(anomaly_map_list) anomaly_map = anomaly_map.sum(dim = 0) results[cls_name[0]]['pr_sp'].extend(text_probs.detach().cpu()) anomaly_map = torch.stack([torch.from_numpy(gaussian_filter(i, sigma = args.sigma)) for i in anomaly_map.detach().cpu()], dim = 0 ) results[cls_name[0]]['anomaly_maps'].append(anomaly_map) #Save the anomaly map images visualizer(items['img_path'], anomaly_map.detach().cpu().numpy(), args.image_size, args.save_path, cls_name) print("print(results)") torch.save(results,"results/results_shinpyung_0.pt") # print(results) table_ls = [] image_auroc_list = [] image_ap_list = [] pixel_auroc_list = [] pixel_aupro_list = [] for obj in obj_list: table = [] table.append(obj) results[obj]['imgs_masks'] = torch.cat(results[obj]['imgs_masks']) results[obj]['anomaly_maps'] = torch.cat(results[obj]['anomaly_maps']).detach().cpu().numpy() if args.metrics == 'image-level': image_auroc = image_level_metrics(results, obj, "image-auroc") image_ap = image_level_metrics(results, obj, "image-ap") table.append(str(np.round(image_auroc * 100, decimals=1))) table.append(str(np.round(image_ap * 100, decimals=1))) image_auroc_list.append(image_auroc) image_ap_list.append(image_ap) elif args.metrics == 'pixel-level': pixel_auroc = pixel_level_metrics(results, obj, "pixel-auroc") pixel_aupro = pixel_level_metrics(results, obj, "pixel-aupro") table.append(str(np.round(pixel_auroc * 100, decimals=1))) table.append(str(np.round(pixel_aupro * 100, decimals=1))) pixel_auroc_list.append(pixel_auroc) pixel_aupro_list.append(pixel_aupro) elif args.metrics == 'image-pixel-level': image_auroc = image_level_metrics(results, obj, "image-auroc") image_ap = image_level_metrics(results, obj, "image-ap") pixel_auroc = pixel_level_metrics(results, obj, "pixel-auroc") pixel_aupro = pixel_level_metrics(results, obj, "pixel-aupro") table.append(str(np.round(pixel_auroc * 100, decimals=1))) table.append(str(np.round(pixel_aupro * 100, decimals=1))) table.append(str(np.round(image_auroc * 100, decimals=1))) table.append(str(np.round(image_ap * 100, decimals=1))) image_auroc_list.append(image_auroc) image_ap_list.append(image_ap) pixel_auroc_list.append(pixel_auroc) pixel_aupro_list.append(pixel_aupro) table_ls.append(table) if args.metrics == 'image-level': # logger table_ls.append(['mean', str(np.round(np.mean(image_auroc_list) * 100, decimals=1)), str(np.round(np.mean(image_ap_list) * 100, decimals=1))]) results = tabulate(table_ls, headers=['objects', 'image_auroc', 'image_ap'], tablefmt="pipe") elif args.metrics == 'pixel-level': # logger table_ls.append(['mean', str(np.round(np.mean(pixel_auroc_list) * 100, decimals=1)), str(np.round(np.mean(pixel_aupro_list) * 100, decimals=1)) ]) results = tabulate(table_ls, headers=['objects', 'pixel_auroc', 'pixel_aupro'], tablefmt="pipe") elif args.metrics == 'image-pixel-level': # logger table_ls.append(['mean', str(np.round(np.mean(pixel_auroc_list) * 100, decimals=1)), str(np.round(np.mean(pixel_aupro_list) * 100, decimals=1)), str(np.round(np.mean(image_auroc_list) * 100, decimals=1)), str(np.round(np.mean(image_ap_list) * 100, decimals=1))]) results = tabulate(table_ls, headers=['objects', 'pixel_auroc', 'pixel_aupro', 'image_auroc', 'image_ap'], tablefmt="pipe") logger.info("\n%s", results) if __name__ == '__main__': parser = argparse.ArgumentParser("AnomalyCLIP", add_help=True) # paths parser.add_argument("--data_path", type=str, default="./data/4inlab/", help="path to test dataset") parser.add_argument("--save_path", type=str, default='./results/', help='path to save results') parser.add_argument("--checkpoint_path", type=str, default='./checkpoint/241122_SP_DPAM_13_518', help='path to checkpoint') # model parser.add_argument("--dataset", type=str, default='4inlab') parser.add_argument("--image_size", type=int, default=518, help="image size") parser.add_argument("--depth", type=int, default=9, help="image size") parser.add_argument("--n_ctx", type=int, default=12, help="zero shot") parser.add_argument("--t_n_ctx", type=int, default=4, help="zero shot") parser.add_argument("--metrics", type=str, default='image-pixel-level') parser.add_argument("--seed", type=int, default=111, help="random seed") parser.add_argument("--sigma", type=int, default=4, help="zero shot") # Specify layers from which feature maps will be extracted (can pass multiple values) parser.add_argument("--feature_map_layer", type=int, nargs="+", default=[0, 1, 2, 3], help="zero shot") # List of layers whose features will be used parser.add_argument("--features_list", type=int, nargs="+", default=[6, 12, 18, 24], help="features used") args = parser.parse_args() print(args) setup_seed(args.seed) test(args) #%%