radinplaid commited on
Commit
ef779b4
·
verified ·
1 Parent(s): 16e8618

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - de
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.de-en
10
+ model-index:
11
+ - name: quickmt-en-de
12
+ results:
13
+ - task:
14
+ name: Translation eng-deu
15
+ type: translation
16
+ args: eng-deu
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: eng_Latn deu_Latn devtest
21
+ metrics:
22
+ - name: CHRF
23
+ type: chrf
24
+ value: 66.26
25
+ - name: BLEU
26
+ type: bleu
27
+ value: 40.17
28
+ - name: COMET
29
+ type: comet
30
+ value: 86.91
31
+ ---
32
+
33
+ # `quickmt-en-de` Neural Machine Translation Model
34
+
35
+ `quickmt-en-de` is a reasonably fast and reasonably accurate neural machine translation model for translation from `de` into `en`.
36
+
37
+
38
+ ## Model Information
39
+
40
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
41
+ * 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
42
+ * 20k separate Sentencepiece vocabularies
43
+ * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
44
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.de-en/tree/main
45
+
46
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
47
+
48
+ ## Usage with `quickmt`
49
+
50
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
51
+
52
+ Next, install the `quickmt` python library and download the model:
53
+
54
+ ```bash
55
+ git clone https://github.com/quickmt/quickmt.git
56
+ pip install ./quickmt/
57
+
58
+ quickmt-model-download quickmt/quickmt-en-de ./quickmt-en-de
59
+ ```
60
+
61
+ Finally use the model in python:
62
+
63
+ ```python
64
+ from quickmt import Translator
65
+
66
+ # Auto-detects GPU, set to "cpu" to force CPU inference
67
+ t = Translator("./quickmt-en-de/", device="auto")
68
+
69
+ # Translate - set beam size to 5 for higher quality (but slower speed)
70
+ sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
71
+
72
+ t(sample_text, beam_size=5)
73
+
74
+ > 'Dr. Ehud Ur, Professor für Medizin an der Dalhousie University in Halifax, Nova Scotia und Vorsitzender der klinischen und wissenschaftlichen Abteilung der Canadian Diabetes Association warnte, dass die Forschung noch in ihren frühen Tagen ist.'
75
+
76
+ # Get alternative translations by sampling
77
+ # You can pass any cTranslate2 `translate_batch` arguments
78
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
79
+
80
+ ```
81
+
82
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
83
+
84
+
85
+ ## Metrics
86
+
87
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("deu_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a large batch size).
88
+
89
+ | | bleu | chrf2 | comet22 | Time (s) |
90
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
91
+ | quickmt/quickmt-en-de | 40.17 | 66.26 | 86.91 | 1.1 |
92
+ | Helsink-NLP/opus-mt-en-de | 36.06 | 63.53 | 84.63 | 3.72 |
93
+ | facebook/nllb-200-distilled-600M | 35.72 | 63.41 | 86.65 | 26.93 |
94
+ | facebook/nllb-200-distilled-1.3B | 38.61 | 65.01 | 87.99 | 46.57 |
95
+ | facebook/m2m100_418M | 28.57 | 57.76 | 79.75 | 21.46 |
96
+ | facebook/m2m100_1.2B | 36.24 | 63.37 | 85.82 | 41.5 |
97
+
98
+ `quickmt-en-de` is the fastest and highest quality (except possibly for nllb-200-distilled-1.3B which has a higher comet22 score).
.ipynb_checkpoints/config-checkpoint.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_source_bos": false,
3
+ "add_source_eos": false,
4
+ "bos_token": "<s>",
5
+ "decoder_start_token": "<s>",
6
+ "eos_token": "</s>",
7
+ "layer_norm_epsilon": 1e-06,
8
+ "multi_query_attention": false,
9
+ "unk_token": "<unk>"
10
+ }
.ipynb_checkpoints/eole-config-checkpoint.yaml ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: en-de/data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: en.eole.vocab
12
+ tgt_vocab: de.eole.vocab
13
+ src_vocab_size: 20000
14
+ tgt_vocab_size: 20000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.de-en/en
22
+ path_tgt: hf://quickmt/quickmt-train.de-en/de
23
+ path_sco: hf://quickmt/quickmt-train.de-en/sco
24
+ valid:
25
+ path_src: dev.en
26
+ path_tgt: dev.de
27
+
28
+ transforms: [sentencepiece, filtertoolong]
29
+ transforms_configs:
30
+ sentencepiece:
31
+ src_subword_model: "en.spm.model"
32
+ tgt_subword_model: "de.spm.model"
33
+ filtertoolong:
34
+ src_seq_length: 256
35
+ tgt_seq_length: 256
36
+
37
+ training:
38
+ # Run configuration
39
+ model_path: model
40
+ #train_from: model
41
+ keep_checkpoint: 4
42
+ save_checkpoint_steps: 1000
43
+ train_steps: 200000
44
+ valid_steps: 1000
45
+
46
+ # Train on a single GPU
47
+ world_size: 1
48
+ gpu_ranks: [0]
49
+
50
+ # Batching
51
+ batch_type: "tokens"
52
+ batch_size: 16384
53
+ valid_batch_size: 16384
54
+ batch_size_multiple: 8
55
+ accum_count: [8]
56
+ accum_steps: [0]
57
+
58
+ # Optimizer & Compute
59
+ compute_dtype: "fp16"
60
+ #use_amp: true
61
+ optim: "pagedadamw8bit"
62
+ learning_rate: 2.0
63
+ warmup_steps: 5000
64
+ decay_method: "noam"
65
+ adam_beta2: 0.998
66
+
67
+ # Data loading
68
+ bucket_size: 128000
69
+ num_workers: 4
70
+ prefetch_factor: 32
71
+
72
+ # Hyperparams
73
+ dropout_steps: [0]
74
+ dropout: [0.1]
75
+ attention_dropout: [0]
76
+ max_grad_norm: 2
77
+ label_smoothing: 0.1
78
+ average_decay: 0.0001
79
+ param_init_method: xavier_uniform
80
+ normalization: "tokens"
81
+
82
+ model:
83
+ architecture: "transformer"
84
+ layer_norm: standard
85
+ share_embeddings: false
86
+ share_decoder_embeddings: true
87
+ add_ffnbias: true
88
+ mlp_activation_fn: gelu
89
+ add_estimator: false
90
+ add_qkvbias: false
91
+ norm_eps: 1e-6
92
+ hidden_size: 1024
93
+ encoder:
94
+ layers: 8
95
+ decoder:
96
+ layers: 2
97
+ heads: 8
98
+ transformer_ff: 4096
99
+ embeddings:
100
+ word_vec_size: 1024
101
+ position_encoding_type: "SinusoidalInterleaved"
102
+
README.md CHANGED
@@ -1,3 +1,98 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - de
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.de-en
10
+ model-index:
11
+ - name: quickmt-en-de
12
+ results:
13
+ - task:
14
+ name: Translation eng-deu
15
+ type: translation
16
+ args: eng-deu
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: eng_Latn deu_Latn devtest
21
+ metrics:
22
+ - name: CHRF
23
+ type: chrf
24
+ value: 66.26
25
+ - name: BLEU
26
+ type: bleu
27
+ value: 40.17
28
+ - name: COMET
29
+ type: comet
30
+ value: 86.91
31
+ ---
32
+
33
+ # `quickmt-en-de` Neural Machine Translation Model
34
+
35
+ `quickmt-en-de` is a reasonably fast and reasonably accurate neural machine translation model for translation from `de` into `en`.
36
+
37
+
38
+ ## Model Information
39
+
40
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
41
+ * 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
42
+ * 20k separate Sentencepiece vocabularies
43
+ * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
44
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.de-en/tree/main
45
+
46
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
47
+
48
+ ## Usage with `quickmt`
49
+
50
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
51
+
52
+ Next, install the `quickmt` python library and download the model:
53
+
54
+ ```bash
55
+ git clone https://github.com/quickmt/quickmt.git
56
+ pip install ./quickmt/
57
+
58
+ quickmt-model-download quickmt/quickmt-en-de ./quickmt-en-de
59
+ ```
60
+
61
+ Finally use the model in python:
62
+
63
+ ```python
64
+ from quickmt import Translator
65
+
66
+ # Auto-detects GPU, set to "cpu" to force CPU inference
67
+ t = Translator("./quickmt-en-de/", device="auto")
68
+
69
+ # Translate - set beam size to 5 for higher quality (but slower speed)
70
+ sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
71
+
72
+ t(sample_text, beam_size=5)
73
+
74
+ > 'Dr. Ehud Ur, Professor für Medizin an der Dalhousie University in Halifax, Nova Scotia und Vorsitzender der klinischen und wissenschaftlichen Abteilung der Canadian Diabetes Association warnte, dass die Forschung noch in ihren frühen Tagen ist.'
75
+
76
+ # Get alternative translations by sampling
77
+ # You can pass any cTranslate2 `translate_batch` arguments
78
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
79
+
80
+ ```
81
+
82
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
83
+
84
+
85
+ ## Metrics
86
+
87
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("deu_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a large batch size).
88
+
89
+ | | bleu | chrf2 | comet22 | Time (s) |
90
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
91
+ | quickmt/quickmt-en-de | 40.17 | 66.26 | 86.91 | 1.1 |
92
+ | Helsink-NLP/opus-mt-en-de | 36.06 | 63.53 | 84.63 | 3.72 |
93
+ | facebook/nllb-200-distilled-600M | 35.72 | 63.41 | 86.65 | 26.93 |
94
+ | facebook/nllb-200-distilled-1.3B | 38.61 | 65.01 | 87.99 | 46.57 |
95
+ | facebook/m2m100_418M | 28.57 | 57.76 | 79.75 | 21.46 |
96
+ | facebook/m2m100_1.2B | 36.24 | 63.37 | 85.82 | 41.5 |
97
+
98
+ `quickmt-en-de` is the fastest and highest quality (except possibly for nllb-200-distilled-1.3B which has a higher comet22 score).
config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_source_bos": false,
3
+ "add_source_eos": false,
4
+ "bos_token": "<s>",
5
+ "decoder_start_token": "<s>",
6
+ "eos_token": "</s>",
7
+ "layer_norm_epsilon": 1e-06,
8
+ "multi_query_attention": false,
9
+ "unk_token": "<unk>"
10
+ }
eole-config.yaml ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: en-de/data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: en.eole.vocab
12
+ tgt_vocab: de.eole.vocab
13
+ src_vocab_size: 20000
14
+ tgt_vocab_size: 20000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.de-en/en
22
+ path_tgt: hf://quickmt/quickmt-train.de-en/de
23
+ path_sco: hf://quickmt/quickmt-train.de-en/sco
24
+ valid:
25
+ path_src: dev.en
26
+ path_tgt: dev.de
27
+
28
+ transforms: [sentencepiece, filtertoolong]
29
+ transforms_configs:
30
+ sentencepiece:
31
+ src_subword_model: "en.spm.model"
32
+ tgt_subword_model: "de.spm.model"
33
+ filtertoolong:
34
+ src_seq_length: 256
35
+ tgt_seq_length: 256
36
+
37
+ training:
38
+ # Run configuration
39
+ model_path: model
40
+ #train_from: model
41
+ keep_checkpoint: 4
42
+ save_checkpoint_steps: 1000
43
+ train_steps: 200000
44
+ valid_steps: 1000
45
+
46
+ # Train on a single GPU
47
+ world_size: 1
48
+ gpu_ranks: [0]
49
+
50
+ # Batching
51
+ batch_type: "tokens"
52
+ batch_size: 16384
53
+ valid_batch_size: 16384
54
+ batch_size_multiple: 8
55
+ accum_count: [8]
56
+ accum_steps: [0]
57
+
58
+ # Optimizer & Compute
59
+ compute_dtype: "fp16"
60
+ #use_amp: true
61
+ optim: "pagedadamw8bit"
62
+ learning_rate: 2.0
63
+ warmup_steps: 5000
64
+ decay_method: "noam"
65
+ adam_beta2: 0.998
66
+
67
+ # Data loading
68
+ bucket_size: 128000
69
+ num_workers: 4
70
+ prefetch_factor: 32
71
+
72
+ # Hyperparams
73
+ dropout_steps: [0]
74
+ dropout: [0.1]
75
+ attention_dropout: [0]
76
+ max_grad_norm: 2
77
+ label_smoothing: 0.1
78
+ average_decay: 0.0001
79
+ param_init_method: xavier_uniform
80
+ normalization: "tokens"
81
+
82
+ model:
83
+ architecture: "transformer"
84
+ layer_norm: standard
85
+ share_embeddings: false
86
+ share_decoder_embeddings: true
87
+ add_ffnbias: true
88
+ mlp_activation_fn: gelu
89
+ add_estimator: false
90
+ add_qkvbias: false
91
+ norm_eps: 1e-6
92
+ hidden_size: 1024
93
+ encoder:
94
+ layers: 8
95
+ decoder:
96
+ layers: 2
97
+ heads: 8
98
+ transformer_ff: 4096
99
+ embeddings:
100
+ word_vec_size: 1024
101
+ position_encoding_type: "SinusoidalInterleaved"
102
+
eole-model/config.json ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "share_vocab": false,
3
+ "tensorboard": true,
4
+ "tensorboard_log_dir": "tensorboard",
5
+ "tensorboard_log_dir_dated": "tensorboard/Mar-19_23-32-41",
6
+ "save_data": "en-de/data",
7
+ "overwrite": true,
8
+ "tgt_vocab_size": 20000,
9
+ "seed": 1234,
10
+ "transforms": [
11
+ "sentencepiece",
12
+ "filtertoolong"
13
+ ],
14
+ "valid_metrics": [
15
+ "BLEU"
16
+ ],
17
+ "src_vocab_size": 20000,
18
+ "src_vocab": "en.eole.vocab",
19
+ "tgt_vocab": "de.eole.vocab",
20
+ "report_every": 100,
21
+ "vocab_size_multiple": 8,
22
+ "n_sample": 0,
23
+ "training": {
24
+ "adam_beta2": 0.998,
25
+ "warmup_steps": 5000,
26
+ "label_smoothing": 0.1,
27
+ "prefetch_factor": 32,
28
+ "num_workers": 0,
29
+ "batch_size": 16384,
30
+ "optim": "pagedadamw8bit",
31
+ "normalization": "tokens",
32
+ "save_checkpoint_steps": 1000,
33
+ "compute_dtype": "torch.float16",
34
+ "max_grad_norm": 2.0,
35
+ "average_decay": 0.0001,
36
+ "gpu_ranks": [
37
+ 0
38
+ ],
39
+ "decay_method": "noam",
40
+ "batch_size_multiple": 8,
41
+ "dropout_steps": [
42
+ 0
43
+ ],
44
+ "param_init_method": "xavier_uniform",
45
+ "world_size": 1,
46
+ "valid_steps": 1000,
47
+ "dropout": [
48
+ 0.1
49
+ ],
50
+ "accum_steps": [
51
+ 0
52
+ ],
53
+ "attention_dropout": [
54
+ 0.0
55
+ ],
56
+ "accum_count": [
57
+ 8
58
+ ],
59
+ "learning_rate": 2.0,
60
+ "batch_type": "tokens",
61
+ "bucket_size": 128000,
62
+ "valid_batch_size": 16384,
63
+ "keep_checkpoint": 4,
64
+ "train_steps": 200000,
65
+ "model_path": "model"
66
+ },
67
+ "transforms_configs": {
68
+ "filtertoolong": {
69
+ "tgt_seq_length": 256,
70
+ "src_seq_length": 256
71
+ },
72
+ "sentencepiece": {
73
+ "src_subword_model": "${MODEL_PATH}/en.spm.model",
74
+ "tgt_subword_model": "${MODEL_PATH}/de.spm.model"
75
+ }
76
+ },
77
+ "model": {
78
+ "hidden_size": 1024,
79
+ "add_ffnbias": true,
80
+ "transformer_ff": 4096,
81
+ "norm_eps": 1e-06,
82
+ "add_qkvbias": false,
83
+ "mlp_activation_fn": "gelu",
84
+ "architecture": "transformer",
85
+ "share_decoder_embeddings": true,
86
+ "position_encoding_type": "SinusoidalInterleaved",
87
+ "share_embeddings": false,
88
+ "heads": 8,
89
+ "add_estimator": false,
90
+ "layer_norm": "standard",
91
+ "decoder": {
92
+ "mlp_activation_fn": "gelu",
93
+ "hidden_size": 1024,
94
+ "decoder_type": "transformer",
95
+ "add_ffnbias": true,
96
+ "n_positions": null,
97
+ "position_encoding_type": "SinusoidalInterleaved",
98
+ "layers": 2,
99
+ "transformer_ff": 4096,
100
+ "tgt_word_vec_size": 1024,
101
+ "heads": 8,
102
+ "norm_eps": 1e-06,
103
+ "layer_norm": "standard",
104
+ "add_qkvbias": false
105
+ },
106
+ "embeddings": {
107
+ "position_encoding_type": "SinusoidalInterleaved",
108
+ "tgt_word_vec_size": 1024,
109
+ "word_vec_size": 1024,
110
+ "src_word_vec_size": 1024
111
+ },
112
+ "encoder": {
113
+ "mlp_activation_fn": "gelu",
114
+ "hidden_size": 1024,
115
+ "src_word_vec_size": 1024,
116
+ "add_ffnbias": true,
117
+ "n_positions": null,
118
+ "position_encoding_type": "SinusoidalInterleaved",
119
+ "encoder_type": "transformer",
120
+ "layers": 8,
121
+ "transformer_ff": 4096,
122
+ "heads": 8,
123
+ "norm_eps": 1e-06,
124
+ "layer_norm": "standard",
125
+ "add_qkvbias": false
126
+ }
127
+ },
128
+ "data": {
129
+ "corpus_1": {
130
+ "path_align": null,
131
+ "transforms": [
132
+ "sentencepiece",
133
+ "filtertoolong"
134
+ ],
135
+ "path_sco": "hf://quickmt/quickmt-train.de-en/sco",
136
+ "path_tgt": "hf://quickmt/quickmt-train.de-en/de",
137
+ "path_src": "hf://quickmt/quickmt-train.de-en/en"
138
+ },
139
+ "valid": {
140
+ "path_align": null,
141
+ "path_src": "dev.en",
142
+ "transforms": [
143
+ "sentencepiece",
144
+ "filtertoolong"
145
+ ],
146
+ "path_tgt": "dev.de"
147
+ }
148
+ }
149
+ }
eole-model/de.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a4a9e3dd26d6562764eb2678f95766afbab48354ddb5b7d63cb7cf7a02cf56a
3
+ size 595491
eole-model/en.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaf7051931aaca182561ba5a63c5674424971d0d6001ab57facb194fe6c941bf
3
+ size 586141
eole-model/model.00.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bce829962ff8f200bcb951ae5da7a3e1d52029829f265144a5fd0b9e376051c5
3
+ size 742170000
eole-model/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f376421d5851fd4b130025c5469a1a2772c8950f560d77383548684802d73533
3
+ size 360843109
source_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
src.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eaf7051931aaca182561ba5a63c5674424971d0d6001ab57facb194fe6c941bf
3
+ size 586141
target_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
tgt.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a4a9e3dd26d6562764eb2678f95766afbab48354ddb5b7d63cb7cf7a02cf56a
3
+ size 595491