radinplaid commited on
Commit
c3ea51b
·
verified ·
1 Parent(s): 71cea56

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - ja
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.ja-en
10
+ model-index:
11
+ - name: quickmt-en-ja
12
+ results:
13
+ - task:
14
+ name: Translation eng-jpn
15
+ type: translation
16
+ args: eng-jpn
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: eng_Latn jpn_Jpan devtest
21
+ metrics:
22
+ - name: CHRF
23
+ type: chrf
24
+ value: 42.04
25
+ - name: COMET
26
+ type: comet
27
+ value: 89.08
28
+ ---
29
+
30
+
31
+ # `quickmt-en-ja` Neural Machine Translation Model
32
+
33
+ `quickmt-en-ja` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `ja`.
34
+
35
+
36
+ ## Model Information
37
+
38
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
39
+ * 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
40
+ * 20k sentencepiece vocabularies
41
+ * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
42
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.ar-en/tree/main
43
+
44
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
45
+
46
+
47
+ ## Usage with `quickmt`
48
+
49
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
50
+
51
+ Next, install the `quickmt` python library and download the model:
52
+
53
+ ```bash
54
+ git clone https://github.com/quickmt/quickmt.git
55
+ pip install ./quickmt/
56
+
57
+ quickmt-model-download quickmt/quickmt-en-ja ./quickmt-en-ja
58
+ ```
59
+
60
+ Finally use the model in python:
61
+
62
+ ```python
63
+ from quickmt import Translator
64
+
65
+ # Auto-detects GPU, set to "cpu" to force CPU inference
66
+ t = Translator("./quickmt-en-ja/", device="auto")
67
+
68
+ # Translate - set beam size to 5 for higher quality (but slower speed)
69
+ sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
70
+ t(sample_text, beam_size=5)
71
+
72
+ > 'ノバスコシア州ハリファックスのダルハウジー大学の医学教授で、カナダ糖尿病協会の臨床および科学部門の議長であるEhud Ur博士は、研究はまだ初期段階にあると警告しました。'
73
+
74
+ # Get alternative translations by sampling
75
+ # You can pass any cTranslate2 `translate_batch` arguments
76
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
77
+
78
+ > 'ノバスコシア州ハリファックスのダルハウジー大学教授で、カナダ糖尿病学会の臨床、科学部会長のエフド・ウル博士がこの研究はまだその初期段階にあると警告した。'
79
+
80
+ ```
81
+
82
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
83
+
84
+
85
+ ## Metrics
86
+
87
+ `chrf2` is calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("eng_Latn"->"jpn_Jpan"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a large batch size).
88
+
89
+ | | chrf2 | comet22 | Time (s) |
90
+ |:---------------------------------|--------:|----------:|-----------:|
91
+ | quickmt/quickmt-en-ja | 42.04 | 89.08 | 1.38 |
92
+ | Helsink-NLP/opus-mt-en-ja | 6.41 | 62.91 | 7.09 |
93
+ | facebook/nllb-200-distilled-600M | 30.00 | 86.64 | 26.05 |
94
+ | facebook/nllb-200-distilled-1.3B | 32.38 | 88.02 | 46.04 |
95
+ | facebook/m2m100_418M | 32.73 | 85.09 | 23.29 |
96
+ | facebook/m2m100_1.2B | 35.83 | 87.78 | 43.89 |
97
+
98
+ `quickmt-en-ja` is the fastest and highest quality by a fair margin.
.ipynb_checkpoints/eole-config-checkpoint.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: en.eole.vocab
12
+ tgt_vocab: ja.eole.vocab
13
+ src_vocab_size: 20000
14
+ tgt_vocab_size: 20000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.ja-en/en
22
+ path_tgt: hf://quickmt/quickmt-train.ja-en/ja
23
+ path_sco: hf://quickmt/quickmt-train.ja-en/sco
24
+ valid:
25
+ path_src: valid.en
26
+ path_tgt: valid.ja
27
+
28
+ transforms: [sentencepiece, filtertoolong]
29
+ transforms_configs:
30
+ sentencepiece:
31
+ src_subword_model: "en.spm.model"
32
+ tgt_subword_model: "ja.spm.model"
33
+ filtertoolong:
34
+ src_seq_length: 256
35
+ tgt_seq_length: 256
36
+
37
+ training:
38
+ # Run configuration
39
+ model_path: quickmt-en-ja-eole-model
40
+ keep_checkpoint: 4
41
+ train_steps: 100_000
42
+ save_checkpoint_steps: 5000
43
+ valid_steps: 5000
44
+
45
+ # Train on a single GPU
46
+ world_size: 1
47
+ gpu_ranks: [0]
48
+
49
+ # Batching 10240
50
+ batch_type: "tokens"
51
+ batch_size: 8000
52
+ valid_batch_size: 4096
53
+ batch_size_multiple: 8
54
+ accum_count: [10]
55
+ accum_steps: [0]
56
+
57
+ # Optimizer & Compute
58
+ compute_dtype: "fp16"
59
+ optim: "adamw"
60
+ learning_rate: 2.0
61
+ warmup_steps: 4000
62
+ decay_method: "noam"
63
+ adam_beta2: 0.998
64
+
65
+ # Data loading
66
+ bucket_size: 128000
67
+ num_workers: 4
68
+ prefetch_factor: 32
69
+
70
+ # Hyperparams
71
+ dropout_steps: [0]
72
+ dropout: [0.1]
73
+ attention_dropout: [0.1]
74
+ max_grad_norm: 0
75
+ label_smoothing: 0.1
76
+ average_decay: 0.0001
77
+ average_decay: 0
78
+ param_init_method: xavier_uniform
79
+ normalization: "tokens"
80
+
81
+ model:
82
+ architecture: "transformer"
83
+ share_embeddings: false
84
+ share_decoder_embeddings: false
85
+ hidden_size: 1024
86
+ encoder:
87
+ layers: 8
88
+ decoder:
89
+ layers: 2
90
+ heads: 8
91
+ transformer_ff: 4096
92
+ embeddings:
93
+ word_vec_size: 1024
94
+ position_encoding_type: "SinusoidalInterleaved"
README.md CHANGED
@@ -1,3 +1,98 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - ja
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.ja-en
10
+ model-index:
11
+ - name: quickmt-en-ja
12
+ results:
13
+ - task:
14
+ name: Translation eng-jpn
15
+ type: translation
16
+ args: eng-jpn
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: eng_Latn jpn_Jpan devtest
21
+ metrics:
22
+ - name: CHRF
23
+ type: chrf
24
+ value: 42.04
25
+ - name: COMET
26
+ type: comet
27
+ value: 89.08
28
+ ---
29
+
30
+
31
+ # `quickmt-en-ja` Neural Machine Translation Model
32
+
33
+ `quickmt-en-ja` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `ja`.
34
+
35
+
36
+ ## Model Information
37
+
38
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
39
+ * 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
40
+ * 20k sentencepiece vocabularies
41
+ * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
42
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.ar-en/tree/main
43
+
44
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
45
+
46
+
47
+ ## Usage with `quickmt`
48
+
49
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
50
+
51
+ Next, install the `quickmt` python library and download the model:
52
+
53
+ ```bash
54
+ git clone https://github.com/quickmt/quickmt.git
55
+ pip install ./quickmt/
56
+
57
+ quickmt-model-download quickmt/quickmt-en-ja ./quickmt-en-ja
58
+ ```
59
+
60
+ Finally use the model in python:
61
+
62
+ ```python
63
+ from quickmt import Translator
64
+
65
+ # Auto-detects GPU, set to "cpu" to force CPU inference
66
+ t = Translator("./quickmt-en-ja/", device="auto")
67
+
68
+ # Translate - set beam size to 5 for higher quality (but slower speed)
69
+ sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
70
+ t(sample_text, beam_size=5)
71
+
72
+ > 'ノバスコシア州ハリファックスのダルハウジー大学の医学教授で、カナダ糖尿病協会の臨床および科学部門の議長であるEhud Ur博士は、研究はまだ初期段階にあると警告しました。'
73
+
74
+ # Get alternative translations by sampling
75
+ # You can pass any cTranslate2 `translate_batch` arguments
76
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
77
+
78
+ > 'ノバスコシア州ハリファックスのダルハウジー大学教授で、カナダ糖尿病学会の臨床、科学部会長のエフド・ウル博士がこの研究はまだその初期段階にあると警告した。'
79
+
80
+ ```
81
+
82
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
83
+
84
+
85
+ ## Metrics
86
+
87
+ `chrf2` is calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("eng_Latn"->"jpn_Jpan"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a large batch size).
88
+
89
+ | | chrf2 | comet22 | Time (s) |
90
+ |:---------------------------------|--------:|----------:|-----------:|
91
+ | quickmt/quickmt-en-ja | 42.04 | 89.08 | 1.38 |
92
+ | Helsink-NLP/opus-mt-en-ja | 6.41 | 62.91 | 7.09 |
93
+ | facebook/nllb-200-distilled-600M | 30.00 | 86.64 | 26.05 |
94
+ | facebook/nllb-200-distilled-1.3B | 32.38 | 88.02 | 46.04 |
95
+ | facebook/m2m100_418M | 32.73 | 85.09 | 23.29 |
96
+ | facebook/m2m100_1.2B | 35.83 | 87.78 | 43.89 |
97
+
98
+ `quickmt-en-ja` is the fastest and highest quality by a fair margin.
config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_source_bos": false,
3
+ "add_source_eos": false,
4
+ "bos_token": "<s>",
5
+ "decoder_start_token": "<s>",
6
+ "eos_token": "</s>",
7
+ "layer_norm_epsilon": 1e-06,
8
+ "multi_query_attention": false,
9
+ "unk_token": "<unk>"
10
+ }
eole-config.yaml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: en.eole.vocab
12
+ tgt_vocab: ja.eole.vocab
13
+ src_vocab_size: 20000
14
+ tgt_vocab_size: 20000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.ja-en/en
22
+ path_tgt: hf://quickmt/quickmt-train.ja-en/ja
23
+ path_sco: hf://quickmt/quickmt-train.ja-en/sco
24
+ valid:
25
+ path_src: valid.en
26
+ path_tgt: valid.ja
27
+
28
+ transforms: [sentencepiece, filtertoolong]
29
+ transforms_configs:
30
+ sentencepiece:
31
+ src_subword_model: "en.spm.model"
32
+ tgt_subword_model: "ja.spm.model"
33
+ filtertoolong:
34
+ src_seq_length: 256
35
+ tgt_seq_length: 256
36
+
37
+ training:
38
+ # Run configuration
39
+ model_path: quickmt-en-ja-eole-model
40
+ keep_checkpoint: 4
41
+ train_steps: 100_000
42
+ save_checkpoint_steps: 5000
43
+ valid_steps: 5000
44
+
45
+ # Train on a single GPU
46
+ world_size: 1
47
+ gpu_ranks: [0]
48
+
49
+ # Batching 10240
50
+ batch_type: "tokens"
51
+ batch_size: 8000
52
+ valid_batch_size: 4096
53
+ batch_size_multiple: 8
54
+ accum_count: [10]
55
+ accum_steps: [0]
56
+
57
+ # Optimizer & Compute
58
+ compute_dtype: "fp16"
59
+ optim: "adamw"
60
+ learning_rate: 2.0
61
+ warmup_steps: 4000
62
+ decay_method: "noam"
63
+ adam_beta2: 0.998
64
+
65
+ # Data loading
66
+ bucket_size: 128000
67
+ num_workers: 4
68
+ prefetch_factor: 32
69
+
70
+ # Hyperparams
71
+ dropout_steps: [0]
72
+ dropout: [0.1]
73
+ attention_dropout: [0.1]
74
+ max_grad_norm: 0
75
+ label_smoothing: 0.1
76
+ average_decay: 0.0001
77
+ average_decay: 0
78
+ param_init_method: xavier_uniform
79
+ normalization: "tokens"
80
+
81
+ model:
82
+ architecture: "transformer"
83
+ share_embeddings: false
84
+ share_decoder_embeddings: false
85
+ hidden_size: 1024
86
+ encoder:
87
+ layers: 8
88
+ decoder:
89
+ layers: 2
90
+ heads: 8
91
+ transformer_ff: 4096
92
+ embeddings:
93
+ word_vec_size: 1024
94
+ position_encoding_type: "SinusoidalInterleaved"
eole-model/config.json ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "tensorboard_log_dir": "tensorboard",
3
+ "tgt_vocab": "ja.eole.vocab",
4
+ "share_vocab": false,
5
+ "vocab_size_multiple": 8,
6
+ "n_sample": 0,
7
+ "src_vocab": "en.eole.vocab",
8
+ "transforms": [
9
+ "sentencepiece",
10
+ "filtertoolong"
11
+ ],
12
+ "report_every": 100,
13
+ "tgt_vocab_size": 20000,
14
+ "tensorboard_log_dir_dated": "tensorboard/Apr-17_21-24-27",
15
+ "save_data": "data",
16
+ "src_vocab_size": 20000,
17
+ "overwrite": true,
18
+ "tensorboard": true,
19
+ "valid_metrics": [
20
+ "BLEU"
21
+ ],
22
+ "seed": 1234,
23
+ "training": {
24
+ "attention_dropout": [
25
+ 0.1
26
+ ],
27
+ "dropout_steps": [
28
+ 0
29
+ ],
30
+ "normalization": "tokens",
31
+ "max_grad_norm": 0.0,
32
+ "decay_method": "noam",
33
+ "bucket_size": 128000,
34
+ "average_decay": 0.0,
35
+ "prefetch_factor": 32,
36
+ "learning_rate": 2.0,
37
+ "valid_batch_size": 4096,
38
+ "optim": "adamw",
39
+ "warmup_steps": 4000,
40
+ "adam_beta2": 0.998,
41
+ "batch_type": "tokens",
42
+ "num_workers": 0,
43
+ "save_checkpoint_steps": 5000,
44
+ "param_init_method": "xavier_uniform",
45
+ "accum_steps": [
46
+ 0
47
+ ],
48
+ "train_steps": 100000,
49
+ "gpu_ranks": [
50
+ 0
51
+ ],
52
+ "model_path": "quickmt-en-ja-eole-model",
53
+ "dropout": [
54
+ 0.1
55
+ ],
56
+ "compute_dtype": "torch.float16",
57
+ "keep_checkpoint": 4,
58
+ "batch_size": 8000,
59
+ "valid_steps": 5000,
60
+ "world_size": 1,
61
+ "accum_count": [
62
+ 10
63
+ ],
64
+ "batch_size_multiple": 8,
65
+ "label_smoothing": 0.1
66
+ },
67
+ "data": {
68
+ "corpus_1": {
69
+ "path_src": "en.txt",
70
+ "path_tgt": "ja.txt",
71
+ "transforms": [
72
+ "sentencepiece",
73
+ "filtertoolong"
74
+ ],
75
+ "path_align": null
76
+ },
77
+ "valid": {
78
+ "path_src": "valid.en",
79
+ "path_tgt": "valid.ja",
80
+ "transforms": [
81
+ "sentencepiece",
82
+ "filtertoolong"
83
+ ],
84
+ "path_align": null
85
+ }
86
+ },
87
+ "transforms_configs": {
88
+ "sentencepiece": {
89
+ "src_subword_model": "${MODEL_PATH}/en.spm.model",
90
+ "tgt_subword_model": "${MODEL_PATH}/ja.spm.model"
91
+ },
92
+ "filtertoolong": {
93
+ "tgt_seq_length": 256,
94
+ "src_seq_length": 256
95
+ }
96
+ },
97
+ "model": {
98
+ "hidden_size": 1024,
99
+ "position_encoding_type": "SinusoidalInterleaved",
100
+ "architecture": "transformer",
101
+ "heads": 8,
102
+ "transformer_ff": 4096,
103
+ "share_embeddings": false,
104
+ "share_decoder_embeddings": false,
105
+ "encoder": {
106
+ "n_positions": null,
107
+ "position_encoding_type": "SinusoidalInterleaved",
108
+ "heads": 8,
109
+ "encoder_type": "transformer",
110
+ "layers": 8,
111
+ "transformer_ff": 4096,
112
+ "hidden_size": 1024,
113
+ "src_word_vec_size": 1024
114
+ },
115
+ "embeddings": {
116
+ "tgt_word_vec_size": 1024,
117
+ "word_vec_size": 1024,
118
+ "src_word_vec_size": 1024,
119
+ "position_encoding_type": "SinusoidalInterleaved"
120
+ },
121
+ "decoder": {
122
+ "n_positions": null,
123
+ "position_encoding_type": "SinusoidalInterleaved",
124
+ "heads": 8,
125
+ "layers": 2,
126
+ "tgt_word_vec_size": 1024,
127
+ "decoder_type": "transformer",
128
+ "transformer_ff": 4096,
129
+ "hidden_size": 1024
130
+ }
131
+ }
132
+ }
eole-model/en.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01dc857df9df5987bec61812d1fbc2e78ad530346c09fe3ffaf27184358ab8fd
3
+ size 583983
eole-model/ja.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbd449d7e92d850f6d36efeafb40cea3a8468f55db0ca751ee4ece0ceb70d19b
3
+ size 583133
eole-model/model.00.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:849b2522c07b3c8f88f2ceda83476616dbb4299c5e8bbe926ba516347ef2fb51
3
+ size 823882912
eole-model/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2653ed557273846433473e87bc35e482d956dd529be02faafc0ab9597816585
3
+ size 401699775
source_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
src.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01dc857df9df5987bec61812d1fbc2e78ad530346c09fe3ffaf27184358ab8fd
3
+ size 583983
target_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
tgt.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbd449d7e92d850f6d36efeafb40cea3a8468f55db0ca751ee4ece0ceb70d19b
3
+ size 583133