File size: 4,302 Bytes
5340c65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
language:
- en
- es
tags:
- translation
license: cc-by-4.0
datasets:
- quickmt/quickmt-train.es-en
model-index:
- name: quickmt-es-en
results:
- task:
name: Translation spa-eng
type: translation
args: spa-eng
dataset:
name: flores101-devtest
type: flores_101
args: spa_Latn eng_Latn devtest
metrics:
- name: BLEU
type: bleu
value: 28.64
- name: CHRF
type: chrf
value: 58.61
- name: COMET
type: comet
value: 86.11
---
# `quickmt-es-en` Neural Machine Translation Model
`quickmt-es-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `es` into `en`.
## Model Information
* Trained using [`eole`](https://github.com/eole-nlp/eole)
* 185M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
* 50k joint Sentencepiece vocabulary
* Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
* Training data: https://huggingface.co/datasets/quickmt/quickmt-train.it-en/tree/main
See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
## Usage with `quickmt`
You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
Next, install the `quickmt` python library and download the model:
```bash
git clone https://github.com/quickmt/quickmt.git
pip install ./quickmt/
quickmt-model-download quickmt/quickmt-es-en ./quickmt-es-en
```
Finally use the model in python:
```python
from quickmt import Translator
# Auto-detects GPU, set to "cpu" to force CPU inference
t = Translator("./quickmt-es-en/", device="auto")
# Translate - set beam size to 1 for faster speed (but lower quality)
sample_text = 'La investigación todavía se ubica en su etapa inicial, conforme indicara el Dr. Ehud Ur, docente en la carrera de medicina de la Universidad de Dalhousie, en Halifax, Nueva Escocia, y director del departamento clínico y científico de la Asociación Canadiense de Diabetes.'
t(sample_text, beam_size=5)
> 'The research is still in its early stages, as indicated by Dr. Ehud Ur, a medical professor at the University of Dalhousie, Halifax, Nova Scotia, and director of the clinical and scientific department of the Canadian Diabetes Association.'
# Get alternative translations by sampling
# You can pass any cTranslate2 `translate_batch` arguments
t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
> 'The research is still in its initial stages as instructed by Dr. Ehud Ur, a professor at the medical degree, University of Dalhousie, Halifax, Nova Scotia, and director of the clinical and scientific department of the Canadian Diabetes Association.'
```
The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
## Metrics
`bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("spa_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32 (faster speed is possible using a larger batch size).
| | bleu | chrf2 | comet22 | Time (s) |
|:---------------------------------|-------:|--------:|----------:|-----------:|
| quickmt/quickmt-es-en | 28.64 | 58.61 | 86.11 | 1.33 |
| Helsink-NLP/opus-mt-es-en | 27.62 | 58.38 | 86.01 | 3.67 |
| facebook/nllb-200-distilled-600M | 30.02 | 59.71 | 86.55 | 21.99 |
| facebook/nllb-200-distilled-1.3B | 31.58 | 60.96 | 87.25 | 38.2 |
| facebook/m2m100_418M | 22.85 | 55.04 | 82.9 | 18.83 |
| facebook/m2m100_1.2B | 26.84 | 57.69 | 85.47 | 36.22 |
|